JackedUpDBA
JackedUpDBA

Reputation: 59

Python: Using pandas for joining one array to another

How do I use pandas to come up with a joined result of aoiFeatures and allFeaturesReadings that results in this:

183  0.03
845  0.03
853  0.01

Given the following starting code and data:

import numpy
import pandas as pd
allFeatures = [101, 179, 181, 183, 185, 843, 845, 847, 849, 851, 853, 855]
allReadings = [0.03, 0.01, 0.01, 0.03, 0.03, 0.01, 0.03, 0.02, 0.07, 0.06, 0.01, 0.04]
aoiFeatures = [183, 845, 853]

allFeaturesReadings = zip(allFeatures, allReadings)
#
# Use pandas to create Series and Join here?
#
sAllFeaturesReadings = pd.Series(dict(allFeaturesReadings))
sAOIFeatures = pd.Series(numpy.ma.filled(aoiFeatures))
sIndexedAOIFeatures = sAOIFeatures.reindex(numpy.ma.filled(aoiFeatures))
result = pd.concat([sIndexedAOIFeatures,sAllFeaturesReadings], axis=1, join='inner')

Upvotes: 1

Views: 44

Answers (2)

unutbu
unutbu

Reputation: 879621

You could use isin:

import pandas as pd
allFeatures = [101, 179, 181, 183, 185, 843, 845, 847, 849, 851, 853, 855]
allReadings = [0.03, 0.01, 0.01, 0.03, 0.03, 0.01, 0.03, 0.02, 0.07, 0.06, 0.01, 0.04]
aoiFeatures = [183, 845, 853]

df = pd.DataFrame({'features':allFeatures, 'readings':allReadings})
result = df.loc[df['features'].isin(aoiFeatures)]
print(result)

yields

    features  readings
3        183      0.03
6        845      0.03
10       853      0.01

If you plan on selecting rows based on feature values often, and if the features can be made into a unique Index, and if the DataFrame is at least moderately large (say ~10K rows) then it may be better (for performance) to make features the index:

import pandas as pd
allFeatures = [101, 179, 181, 183, 185, 843, 845, 847, 849, 851, 853, 855]
allReadings = [0.03, 0.01, 0.01, 0.03, 0.03, 0.01, 0.03, 0.02, 0.07, 0.06, 0.01, 0.04]
aoiFeatures = [183, 845, 853]

df = pd.DataFrame({'readings':allReadings}, index=allFeatures)
result = df.loc[aoiFeatures]
print(result)

yields

     readings
183      0.03
845      0.03
853      0.01

Here is the setup I used to make the IPython %timeit tests:

import pandas as pd
N = 10000
allFeatures = np.repeat(np.arange(N), 1)
allReadings = np.random.random(N)
aoiFeatures = np.random.choice(allFeatures, N//10, replace=False)

def using_isin():
    df = pd.DataFrame({'features':allFeatures, 'readings':allReadings})
    for i in range(1000):
        result = df.loc[df['features'].isin(aoiFeatures)]
    return result


def using_index():
    df = pd.DataFrame({'readings':allReadings}, index=allFeatures)
    for i in range(1000):
        result = df.loc[aoiFeatures]
    return result

This shows using_index can be a bit faster:

In [108]: %timeit using_isin()
1 loop, best of 3: 697 ms per loop

In [109]: %timeit using_index()
1 loop, best of 3: 432 ms per loop

Note however, if allFeatures contains duplicates, then making it the Index is NOT advantageous. For example, if you change the setup above to use:

allFeatures = np.repeat(np.arange(N//2), 2)    # repeat every value twice

then

In [114]: %timeit using_isin()
1 loop, best of 3: 667 ms per loop

In [115]: %timeit using_index()
1 loop, best of 3: 3.47 s per loop

Upvotes: 0

Toby Petty
Toby Petty

Reputation: 4660

Without needing to zip you can do:

df = pd.DataFrame(data={"allFeatures":allFeatures, "allReadings":allReadings})
df[df["allFeatures"].isin(aoiFeatures)]

Upvotes: 1

Related Questions