Reputation: 107
I want to be able to calculate the cumulative sum of a large n-dimensional numpy array. The value of each element in the final array should be the sum of all elements which have indices greater than or equal to the current element.
2D: xᶦʲ = ∑xᵐⁿ ∀ m ≥ i and n ≥ j
3D: xᶦʲᵏ = ∑xᵐⁿᵒ ∀ m ≥ i and n ≥ j and o ≥ k
Examples in 2D:
1 1 0 2 1 0
1 1 1 -> 5 3 1
1 1 1 8 5 2
1 2 3 6 5 3
4 5 6 -> 21 16 9
7 8 9 45 33 18
Example in 3D:
1 1 1 3 2 1
1 1 1 6 4 2
1 1 1 9 6 3
1 1 1 6 4 2
1 1 1 -> 12 8 4
1 1 1 18 12 6
1 1 1 9 6 3
1 1 1 18 12 6
1 1 1 27 18 9
Upvotes: 6
Views: 3710
Reputation: 17607
For those who want a "numpy
-like" cumsum where the top-left corner is smallest:
def multidim_cumsum(a):
out = a.cumsum(-1)
for i in range(2,a.ndim+1):
np.cumsum(out, axis=-i, out=out)
return out
Modified from @Divakar (thanks to him!)
Upvotes: 5
Reputation: 53069
Here is a general solution. I'm going by the description, not the examples, i.e. order of vertical display is top down not bottom up:
import itertools as it
import functools as ft
ft.reduce(np.cumsum, it.chain((a[a.ndim*(np.s_[::-1],)],), range(a.ndim)))[a.ndim*(np.s_[::-1],)]
Or in-place:
for i in range(a.ndim):
b = a.swapaxes(0, i)[::-1]
b.cumsum(axis=0, out=b)
Upvotes: 2
Reputation: 221614
Flip along the last axis, cumsum along the same, flip it back and finally cumsum along the second last axis onwards until the first axis -
def multidim_cumsum(a):
out = a[...,::-1].cumsum(-1)[...,::-1]
for i in range(2,a.ndim+1):
np.cumsum(out, axis=-i, out=out)
return out
Sample 2D case run -
In [107]: a
Out[107]:
array([[1, 1, 0],
[1, 1, 1],
[1, 1, 1]])
In [108]: multidim_cumsum(a)
Out[108]:
array([[2, 1, 0],
[5, 3, 1],
[8, 5, 2]])
Sample 3D case run -
In [110]: a
Out[110]:
array([[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]],
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]],
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]])
In [111]: multidim_cumsum(a)
Out[111]:
array([[[ 3, 2, 1],
[ 6, 4, 2],
[ 9, 6, 3]],
[[ 6, 4, 2],
[12, 8, 4],
[18, 12, 6]],
[[ 9, 6, 3],
[18, 12, 6],
[27, 18, 9]]])
Upvotes: 5