Reputation: 473
Using Tensorflow, I build a binary classification model:
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import tensorflow
import glob
from PIL import Image
import numpy as np
img_width, img_height = 28, 28#all MNIST images are of size (28*28)
train_data_dir = '/Binary Classifier/data/train'#train directory generated by train_cla
validation_data_dir = '/Binary Classifier/data/val'#validation directory generated by val_cla
train_samples = 40000
validation_samples = 10000
epochs = 2
batch_size = 512
if K.image_data_format() == 'channels_first':
input_shape = (1, img_width, img_height)
else:
input_shape = (img_width, img_height, 1)
#build a sequential model to train data
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(#train data generator
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
val_datagen = ImageDataGenerator(rescale=1. / 255)#validation data generator
train_generator = train_datagen.flow_from_directory(#train generator
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = val_datagen.flow_from_directory(#validation generator
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(#fit the generator to train and validate the model
train_generator,
steps_per_epoch=train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_samples // batch_size)
But I got an error saying "ValueError: Error when checking input: expected conv2d_1_input to have shape (28, 28, 1) but got array with shape (28, 28, 3)", and I don't understand where this error comes from. I specifically defines the input shape to be either (28,28,1) or (28,28,1), and all my input data are MNIST digits which should also be size of (28,28,1). How does the generator receive a (28,28,3) array? Any help is appreciated!
Upvotes: 2
Views: 455
Reputation: 56417
The default in ImageDataGenerator's flow_from_directory
is to load color images in RGB format, which implies three channels. You want to load images as grayscale (one channel), and you can do this by setting the color_mode
parameter in flow_from_directory
to grayscale
.
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary', color_mode = 'grayscale')
validation_generator = val_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary', color_mode = 'grayscale')
Upvotes: 3