Steven Chan
Steven Chan

Reputation: 473

ValueError: Error when checking input: expected conv2d_1_input to have shape (28, 28, 1) but got array with shape (28, 28, 3)

Using Tensorflow, I build a binary classification model:

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import tensorflow
import glob
from PIL import Image
import numpy as np

img_width, img_height = 28, 28#all MNIST images are of size (28*28)

train_data_dir = '/Binary Classifier/data/train'#train directory generated by train_cla
validation_data_dir = '/Binary Classifier/data/val'#validation directory generated by val_cla
train_samples = 40000
validation_samples = 10000
epochs = 2
batch_size = 512

if K.image_data_format() == 'channels_first':
    input_shape = (1, img_width, img_height)
else:
    input_shape = (img_width, img_height, 1)

#build a sequential model to train data
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

train_datagen = ImageDataGenerator(#train data generator
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

val_datagen = ImageDataGenerator(rescale=1. / 255)#validation data generator

train_generator = train_datagen.flow_from_directory(#train generator
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

validation_generator = val_datagen.flow_from_directory(#validation generator
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

model.fit_generator(#fit the generator to train and validate the model
    train_generator,
    steps_per_epoch=train_samples // batch_size,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=validation_samples // batch_size)

But I got an error saying "ValueError: Error when checking input: expected conv2d_1_input to have shape (28, 28, 1) but got array with shape (28, 28, 3)", and I don't understand where this error comes from. I specifically defines the input shape to be either (28,28,1) or (28,28,1), and all my input data are MNIST digits which should also be size of (28,28,1). How does the generator receive a (28,28,3) array? Any help is appreciated!

Upvotes: 2

Views: 455

Answers (1)

Dr. Snoopy
Dr. Snoopy

Reputation: 56417

The default in ImageDataGenerator's flow_from_directory is to load color images in RGB format, which implies three channels. You want to load images as grayscale (one channel), and you can do this by setting the color_mode parameter in flow_from_directory to grayscale.

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary', color_mode = 'grayscale')

validation_generator = val_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary', color_mode = 'grayscale')

Upvotes: 3

Related Questions