Reputation: 4190
I have a tree structure. The nodes would have a leaf node type and internal node type, so I defined these structures, so the internal node would be able to point to either internal nodes or leaf nodes. However, I am having trouble in accessing the child pointers, how can I do that, after all does my code make sense at all?
typedef struct leaf_node_t {
int type;
int key;
int *data_ptr[2]; //This will point to real data.
} leaf_node_t;
typedef struct internal_node_t {
int type;
int key;
typedef union{
struct internal_node_t* iptrs[2];
leaf_node_t* lptrs[2];
} node_ptr;
} internal_node_t;
Upvotes: 2
Views: 856
Reputation: 44
The typedef of node_ptr does not actually add a field to its enclosing struct. The following adds the fields first, and then follows up with the typedef. The other change I made was having the union represent a single pointer, leaving it to the struct that uses it to decide how many pointers it wants.
typedef struct internal_node_t{
int type;
int key;
union node_ptr_t {
struct internal_node_t* iptr;
leaf_node_t* lptr;
} node_ptr[2];
}internal_node_t;
typedef union node_ptr_t node_ptr_t;
Upvotes: 2
Reputation: 49128
Try this:
typedef struct leaf_node_t{
int key;
int *data_ptr[2];//this will point to real data
} leaf_node_t;
struct internal_node_t;
typedef union{
struct internal_node_t* iptrs[2];
leaf_node_t* lptrs[2];
} node_ptr;
typedef struct internal_node_t{
int key;
node_ptr node;
} internal_node_t;
int main()
{
internal_node_t inode;
leaf_node_t* leaf_node = inode.node.lptrs[0];
return 0;
}
Alternately, if you don't actually need to use the union typedef anywhere else:
typedef struct leaf_node_t{
int key;
int *data_ptr[2];//this will point to real data
}leaf_node_t;
typedef struct internal_node_t{
int key;
union{
struct internal_node_t* iptrs[2];
leaf_node_t* lptrs[2];
}node_ptr;
}internal_node_t;
int main()
{
internal_node_t inode;
leaf_node_t* leaf_node = inode.node_ptr.lptrs[0];
return 0;
}
Upvotes: 2
Reputation: 111940
You should add a flag in the internal_node to know what is the node_ptr, if it's an internal_node_t or a leaf_node_t. Probably a int isInternal[2]; (after the key and before the typedef). if it's 0 the it's internal, if it's 1 then it's leaf_node_t. C language doesn't have a typeof or a GetType to know what type of memory is pointed by a pointer (and C++ has it only if you are compiling with the RTTI "option" activated)
Upvotes: 1