Reputation: 11
I am quite new to R programming, and am having some difficulty with ANOTHER step of my project. I am not even sure at this point if I am asking the question correctly. I have a dataframe of actual and predicted values:
actual predicted.1 predicted.2 predicted.3 predicted.4
a a a a a
a a a b b
b b a b b
b a b b c
c c c c c
c d c c d
d d d c d
d d d d a
The issue that I am having is that I need to create a vector of mismatches between the actual value and each of the four predicted values. This should result in a single vector: c(2,1,2,4)
I am trying to use a boolean mask to sum over the TRUE values...but something is not working right. I need to do this sum for each of the four predicted values to actual value comparisons.
discordant_sums(df[,seq(1,ncol(df),2)]!=,df[,seq(2,ncol(df),2)])
Any suggestions would be greatly appreciated.
Upvotes: 1
Views: 44
Reputation: 887158
We can replicate the first column to make the lengths equal between the comparison objects and do the colSums
as.vector(colSums(df[,1][row(df[-1])] != df[-1]))
#[1] 2 1 2 4
df <- structure(list(actual = c("a", "a", "b", "b", "c", "c", "d",
"d"), predicted.1 = c("a", "a", "b", "a", "c", "d", "d", "d"),
predicted.2 = c("a", "a", "a", "b", "c", "c", "d", "d"),
predicted.3 = c("a", "b", "b", "b", "c", "c", "c", "d"),
predicted.4 = c("a", "b", "b", "c", "c", "d", "d", "a")),
.Names = c("actual",
"predicted.1", "predicted.2", "predicted.3", "predicted.4"),
class = "data.frame", row.names = c(NA,
-8L))
Upvotes: 1
Reputation: 20095
You can use apply
to compare values in 1st column with values in each of all other columns.
apply(df[-1], 2, function(x)sum(df[1]!=x))
# predicted.1 predicted.2 predicted.3 predicted.4
# 2 1 2 4
Data:
df <- read.table(text =
"actual predicted.1 predicted.2 predicted.3 predicted.4
a a a a a
a a a b b
b b a b b
b a b b c
c c c c c
c d c c d
d d d c d
d d d d a",
header = TRUE, stringsAsFactors = FALSE)
Upvotes: 1