zyxue
zyxue

Reputation: 8820

Implementing Luong Attention in PyTorch

I am trying to implement the attention described in Luong et al. 2015 in PyTorch myself, but I couldn't get it work. Below is my code, I am only interested in the "general" attention case for now. I wonder if I am missing any obvious error. It runs, but doesn't seem to learn.

class AttnDecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size, dropout_p=0.1):
        super(AttnDecoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.dropout_p = dropout_p

        self.embedding = nn.Embedding(
            num_embeddings=self.output_size,
            embedding_dim=self.hidden_size
        )
        self.dropout = nn.Dropout(self.dropout_p)
        self.gru = nn.GRU(self.hidden_size, self.hidden_size)
        self.attn = nn.Linear(self.hidden_size, self.hidden_size)
        # hc: [hidden, context]
        self.Whc = nn.Linear(self.hidden_size * 2, self.hidden_size)
        # s: softmax
        self.Ws = nn.Linear(self.hidden_size, self.output_size)

    def forward(self, input, hidden, encoder_outputs):
        embedded = self.embedding(input).view(1, 1, -1)
        embedded = self.dropout(embedded)

        gru_out, hidden = self.gru(embedded, hidden)

        # [0] remove the dimension of directions x layers for now
        attn_prod = torch.mm(self.attn(hidden)[0], encoder_outputs.t())
        attn_weights = F.softmax(attn_prod, dim=1) # eq. 7/8
        context = torch.mm(attn_weights, encoder_outputs)

        # hc: [hidden: context]
        out_hc = F.tanh(self.Whc(torch.cat([hidden[0], context], dim=1)) # eq.5
        output = F.log_softmax(self.Ws(out_hc), dim=1) eq. 6

        return output, hidden, attn_weights

I have studied the attention implemented in

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

and

https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb

Upvotes: 6

Views: 7533

Answers (1)

zyxue
zyxue

Reputation: 8820

This version works, and it follows the definition of Luong Attention (general), closely. The main difference from that in the question is the separation of embedding_size and hidden_size, which appears to be important for training after experimentation. Previously, I made both of them the same size (256), which creates trouble for learning, and it seems that the network could only learn half the sequence.

class EncoderRNN(nn.Module):
    def __init__(self, input_size, embedding_size, hidden_size,
                 num_layers=1, bidirectional=False, batch_size=1):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        self.batch_size = batch_size

        self.embedding = nn.Embedding(input_size, embedding_size)

        self.gru = nn.GRU(embedding_size, hidden_size, num_layers,
                          bidirectional=bidirectional)

    def forward(self, input, hidden):
        embedded = self.embedding(input).view(1, 1, -1)
        output, hidden = self.gru(embedded, hidden)
        return output, hidden

    def initHidden(self):
        directions = 2 if self.bidirectional else 1
        return torch.zeros(
            self.num_layers * directions,
            self.batch_size,
            self.hidden_size,
            device=DEVICE
        )


class AttnDecoderRNN(nn.Module):
    def __init__(self, embedding_size, hidden_size, output_size, dropout_p=0):
        super(AttnDecoderRNN, self).__init__()
        self.embedding_size = embedding_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.dropout_p = dropout_p

        self.embedding = nn.Embedding(
            num_embeddings=output_size,
            embedding_dim=embedding_size
        )
        self.dropout = nn.Dropout(self.dropout_p)
        self.gru = nn.GRU(embedding_size, hidden_size)
        self.attn = nn.Linear(hidden_size, hidden_size)
        # hc: [hidden, context]
        self.Whc = nn.Linear(hidden_size * 2, hidden_size)
        # s: softmax
        self.Ws = nn.Linear(hidden_size, output_size)

    def forward(self, input, hidden, encoder_outputs):
        embedded = self.embedding(input).view(1, 1, -1)
        embedded = self.dropout(embedded)

        gru_out, hidden = self.gru(embedded, hidden)

        attn_prod = torch.mm(self.attn(hidden)[0], encoder_outputs.t())
        attn_weights = F.softmax(attn_prod, dim=1)
        context = torch.mm(attn_weights, encoder_outputs)

        # hc: [hidden: context]
        hc = torch.cat([hidden[0], context], dim=1)
        out_hc = F.tanh(self.Whc(hc))
        output = F.log_softmax(self.Ws(out_hc), dim=1)

        return output, hidden, attn_weights

Upvotes: 6

Related Questions