Reputation: 67
I was working with a Pandas dataframe, using the UCI repository credit screening file at http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/crx.data
The data contains some missing values and I want to perform a different imputation strategy depending on the data type of the column. For example, if the column is numeric use median imputing, but if it is categorical replace for a category such as "No Value".
I run this code to identify the numeric columns:
#Import data
import pandas as pd
data = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-
databases/credit-screening/crx.data', header=None)
#Imputation
import numpy as np
data = data.replace('?', np.nan)
numeric_columns = data.select_dtypes(include=[np.number]).columns
And it returns:
Out[67]: Int64Index([2, 7, 10, 14], dtype='int64')
For some reason it is not identifying the column 1 (which is clearly numeric) as such. I believe the cause is that there are some NaN values in the column that are making it look like it is not numeric. Anyone know what's going on and what can I do to identify the column 1 as a numeric?
Thanks!
Upvotes: 3
Views: 2470
Reputation: 51335
The issue is that data[1]
is still of dtype object
after you replace ?
with NaN
. However, you can just cast it to float in either of two ways:
The first is to use pd.to_numeric
with errors='coerce'
, which casts un-parseable strings to NaN
:
data[1] = pd.to_numeric(data[1], errors='coerce')
The second is to use your replace
strategy, and then use astype(float)
:
data = data.replace('?', np.nan)
data[1] = data[1].astype(float)
Both methods will result in column 1
being included as a numeric column:
numeric_columns = data.select_dtypes(include=[np.number]).columns
>>> numeric_columns
Int64Index([1, 2, 7, 10, 14], dtype='int64')
Upvotes: 2
Reputation: 153460
Use pd.to_numeric
with error='ignore'
:
Before, df.info():
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 690 entries, 0 to 689
Data columns (total 16 columns):
0 678 non-null object
1 678 non-null object
2 690 non-null float64
3 684 non-null object
4 684 non-null object
5 681 non-null object
6 681 non-null object
7 690 non-null float64
8 690 non-null object
9 690 non-null object
10 690 non-null int64
11 690 non-null object
12 690 non-null object
13 677 non-null object
14 690 non-null int64
15 690 non-null object
dtypes: float64(2), int64(2), object(12)
memory usage: 86.3+ KB
Use pd.to_numeric:
df = df.replace('?',np.nan)
df = df.apply(lambda x: pd.to_numeric(x,errors='ignore'))
After output, df.info():
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 690 entries, 0 to 689
Data columns (total 16 columns):
0 678 non-null object
1 678 non-null float64
2 690 non-null float64
3 684 non-null object
4 684 non-null object
5 681 non-null object
6 681 non-null object
7 690 non-null float64
8 690 non-null object
9 690 non-null object
10 690 non-null int64
11 690 non-null object
12 690 non-null object
13 677 non-null float64
14 690 non-null int64
15 690 non-null object
dtypes: float64(4), int64(2), object(10)
memory usage: 86.3+ KB
Upvotes: 3