Reputation: 683
I would like to know if/how can I turn the call bellow into a function that can be used in a task that I do fairly often with my data. Sadly, I can't figure out how to design function from the call that involves mutate
, and case_when
, both of these functions rely on dplyr
package and require number of additional arguments.
Alternatively, the call itself seems redundant to me with so many case_when
, perhaps it's possible to reduce how many times its used.
Any help and information about alternative approaches is welcomed.
The call looks like this:
library(dplyr)
library(stringr)
test_data %>%
mutate(
multipleoptions_o1 = case_when(
str_detect(multipleoptions, "option1") ~ 1,
is.na(multipleoptions) ~ NA_real_,
TRUE ~ 0),
multipleoptions_o2 = case_when(
str_detect(multipleoptions, "option2") ~ 1,
is.na(multipleoptions) ~ NA_real_,
TRUE ~ 0),
multipleoptions_o3 = case_when(
str_detect(multipleoptions, "option3") ~ 1,
is.na(multipleoptions) ~ NA_real_,
TRUE ~ 0),
multipleoptions_o4 = case_when(
str_detect(multipleoptions, "option4") ~ 1,
is.na(multipleoptions) ~ NA_real_,
TRUE ~ 0)
)
Sample data:
structure(list(multipleoptions = c("option1", "option2", "option3",
NA, "option2,option3", "option4")), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))
Desired output of the function:
structure(list(multipleoptions = c("option1", "option2", "option3",
NA, "option2,option3", "option4"), multipleoptions_o1 = c(1,
0, 0, NA, 0, 0), multipleoptions_o2 = c(0, 1, 0, NA, 1, 0), multipleoptions_o3 = c(0,
0, 1, NA, 1, 0), multipleoptions_o4 = c(0, 0, 0, NA, 0, 1)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -6L))
Arguments of the function should probably be: data
(i.e., input dataset), multipleoptions
(i.e., the column from data containing answer options, always one column), patterns_to_look_for
(i.e., str_detect patterns to look up in the multipleoptions), number_of_options
, ideally the number of options can be more or less than 4, (I am not sure if it's achievable), output_columns
(i.e., names of new columns, it's always name or original column followed by the option number or option name).
Upvotes: 3
Views: 1900
Reputation: 93761
You can avoid the lengthy case_when
code by splitting the options into separate elements, taking advantage of nesting/unnesting to get a single column of options, and then spreading to get a separate column for each option.
Updated Answer
library(tidyverse)
# Arguments
# data A data frame
# patterns Regular expression giving the pattern(s) at which to split the options strings
# ... Grouping columns, the first of which must be the "options" column.
# If options has repeated values, then there must be a second grouping
# column (an "ID" column) to differentiate these repeated values.
fnc = function(data, patterns, ...) {
col = quos(...)
data %>%
mutate(option=str_split(!!!col[[1]], patterns)) %>%
unnest %>%
mutate(value=1) %>%
group_by(!!!col) %>%
mutate(num_chosen = ifelse(is.na(!!!col[[1]]), 0, sum(value))) %>%
spread(option, value, fill=0) %>%
select_at(vars(-matches("NA")))
}
fnc(test_data, ",", multipleoptions)
multipleoptions num_chosen option1 option2 option3 option4 1 option1 1 1 0 0 0 2 option2 1 0 1 0 0 3 option2,option3 2 0 1 1 0 4 option3 1 0 0 1 0 5 option4 1 0 0 0 1 6 <NA> 0 0 0 0 0
# Fake data
ops = paste0("option",1:4)
set.seed(2)
d = data_frame(var=replicate(20, paste(sample(ops, sample(1:4,1, prob=c(10,8,5,1))), collapse=",")))
# Add missing values
d = bind_rows(d[1:5,], data.frame(var=rep(NA,3)), d[6:nrow(d),])
fnc(d %>% mutate(ID=1:n()), ",", var, ID)
var ID num_chosen option1 option2 option3 option4 1 option1 17 1 1 0 0 0 2 option1,option2 12 2 1 1 0 0 3 option1,option2,option3 5 3 1 1 1 0 4 option1,option2,option4,option3 9 4 1 1 1 1 5 option1,option3 2 2 1 0 1 0 6 option1,option3,option4 3 3 1 0 1 1 7 option1,option4,option2 20 3 1 1 0 1 8 option1,option4,option3,option2 13 4 1 1 1 1 9 option2 11 1 0 1 0 0 10 option2,option3 23 2 0 1 1 0 11 option2,option3,option4 21 3 0 1 1 1 12 option3 1 1 0 0 1 0 13 option3 15 1 0 0 1 0 14 option3,option1 4 2 1 0 1 0 15 option3,option2,option4 14 3 0 1 1 1 16 option3,option4,option2,option1 22 4 1 1 1 1 17 option4 10 1 0 0 0 1 18 option4 16 1 0 0 0 1 19 option4 18 1 0 0 0 1 20 option4,option2,option3 19 3 0 1 1 1 21 <NA> 6 0 0 0 0 0 22 <NA> 7 0 0 0 0 0 23 <NA> 8 0 0 0 0 0
Original Answer
test_data %>%
filter(!is.na(multipleoptions)) %>%
mutate(option=str_split(multipleoptions, ",")) %>%
unnest %>%
mutate(value=1) %>%
spread(option, value)
multipleoptions option1 option2 option3 option4 <chr> <dbl> <dbl> <dbl> <dbl> 1 option1 1 NA NA NA 2 option2 NA 1 NA NA 3 option2,option3 NA 1 1 NA 4 option3 NA NA 1 NA 5 option4 NA NA NA 1
Packaging this into a function:
fnc = function(data, col, patterns) {
col = enquo(col)
data %>%
filter(!is.na(!!col)) %>%
mutate(option=str_split(!!col, patterns)) %>%
unnest %>%
mutate(value=1) %>%
spread(option, value)
}
fnc(test_data, multipleoptions, ",")
If your real data has more than one row with the same value of multipleoptons
, then this code will work only if there's also an ID
column that distinguishes different rows with the same value of multipleoptions
. For example:
# Fake data
ops = paste0("option",1:4)
set.seed(2)
d = data.frame(var=replicate(20, paste(sample(ops, sample(1:4,1, prob=c(10,8,5,1))), collapse=",")))
fnc(d, var, ",")
Error: Duplicate identifiers for rows (1, 27), (16, 28, 30)
# Add unique row identifier
fnc(d %>% mutate(ID = 1:n()), var, ",")
var ID option1 option2 option3 option4 1 option1 14 1 NA NA NA 2 option1,option2 9 1 1 NA NA 3 option1,option2,option3 5 1 1 1 NA 4 option1,option2,option4,option3 6 1 1 1 1 5 option1,option3 2 1 NA 1 NA 6 option1,option3,option4 3 1 NA 1 1 7 option1,option4,option2 17 1 1 NA 1 8 option1,option4,option3,option2 10 1 1 1 1 9 option2 8 NA 1 NA NA 10 option2,option3 20 NA 1 1 NA 11 option2,option3,option4 18 NA 1 1 1 12 option3 1 NA NA 1 NA 13 option3 12 NA NA 1 NA 14 option3,option1 4 1 NA 1 NA 15 option3,option2,option4 11 NA 1 1 1 16 option3,option4,option2,option1 19 1 1 1 1 17 option4 7 NA NA NA 1 18 option4 13 NA NA NA 1 19 option4 15 NA NA NA 1 20 option4,option2,option3 16 NA 1 1 1
Upvotes: 4