Reputation: 4645
Hi I have a data frame like this
df <-data.frame(x=rep(rep(seq(0,3),each=2),2 ),gr=gl(2,8))
x gr
1 0 1
2 0 1
3 1 1
4 1 1
5 2 1
6 2 1
7 3 1
8 3 1
9 0 2
10 0 2
11 1 2
12 1 2
13 2 2
14 2 2
15 3 2
16 3 2
I want to add a new column numbering
sequence of numbers when the x
value ==0
I tried
library(dplyr)
df%>%
group_by(gr)%>%
mutate(numbering=seq(2,8,2))
Error in mutate_impl(.data, dots) :
Column `numbering` must be length 8 (the group size) or one, not 4
?
Just for side note mutate(numbering=rep(seq(2,8,2),each=2))
would work for this minimal example but for the general case its better to look x value change from 0!
the expected output
x gr numbering
1 0 1 2
2 0 1 2
3 1 1 4
4 1 1 4
5 2 1 6
6 2 1 6
7 3 1 8
8 3 1 8
9 0 2 2
10 0 2 2
11 1 2 4
12 1 2 4
13 2 2 6
14 2 2 6
15 3 2 8
16 3 2 8
Upvotes: 0
Views: 219
Reputation: 887881
Here is an option using match
to get the index and then pass on the seq
values to fill
df %>%
group_by(gr) %>%
mutate(numbering = seq(2, length.out = n()/2, by = 2)[match(x, unique(x))])
# A tibble: 16 x 3
# Groups: gr [2]
# x gr numbering
# <int> <fct> <dbl>
# 1 0 1 2
# 2 0 1 2
# 3 1 1 4
# 4 1 1 4
# 5 2 1 6
# 6 2 1 6
# 7 3 1 8
# 8 3 1 8
# 9 0 2 2
#10 0 2 2
#11 1 2 4
#12 1 2 4
#13 2 2 6
#14 2 2 6
#15 3 2 8
#16 3 2 8
Upvotes: 1
Reputation: 50738
Do you mean something like this?
library(tidyverse);
df %>%
group_by(gr) %>%
mutate(numbering = cumsum(c(1, diff(x) != 0)))
## A tibble: 16 x 3
## Groups: gr [2]
# x gr numbering
# <int> <fct> <dbl>
# 1 0 1 1.
# 2 0 1 1.
# 3 1 1 2.
# 4 1 1 2.
# 5 2 1 3.
# 6 2 1 3.
# 7 3 1 4.
# 8 3 1 4.
# 9 0 2 1.
#10 0 2 1.
#11 1 2 2.
#12 1 2 2.
#13 2 2 3.
#14 2 2 3.
#15 3 2 4.
#16 3 2 4.
Or if you must have a numbering
sequence 2,4,6,...
instead of 1,2,3,...
you can do
df %>%
group_by(gr) %>%
mutate(numering = 2 * cumsum(c(1, diff(x) != 0)));
## A tibble: 16 x 3
## Groups: gr [2]
# x gr numering
# <int> <fct> <dbl>
# 1 0 1 2.
# 2 0 1 2.
# 3 1 1 4.
# 4 1 1 4.
# 5 2 1 6.
# 6 2 1 6.
# 7 3 1 8.
# 8 3 1 8.
# 9 0 2 2.
#10 0 2 2.
#11 1 2 4.
#12 1 2 4.
#13 2 2 6.
#14 2 2 6.
#15 3 2 8.
#16 3 2 8.
Upvotes: 2