Reputation: 175
I have a pandas dataframe Object, containing a column with a bag of words representation of text stored as 29881x23947 sparse matrix of type ''. The column was processed by using sklearn and the fit_transform() function.
I now want to tranform this Colum into a 2D Tensor with the convert_to_tensor() function.
x_train_tensor = tf.convert_to_tensor(x_train)
Getting the error Message:
TypeError: Expected binary or unicode string
Which Format is required to Transform my Matrix into a Tensor?
Edit: printing out the type of the column it says:
<class 'scipy.sparse.csr.csr_matrix'>
Example of the dataframe as output:
0 (0, 6276)\t1\n (0, 8209)\t1\n (0, 14299)\t...
1 (0, 6276)\t1\n (0, 8209)\t1\n (0, 14299)\t...
2 (0, 6276)\t1\n (0, 8209)\t1\n (0, 14299)\t...
3 (0, 6276)\t1\n (0, 8209)\t1\n (0, 14299)\t...
Upvotes: 5
Views: 4522
Reputation: 17191
Here is an example of converting a sparse scipy
matrix to tensorflow
dense format.
Input sparse scipy matrix
A = np.array([[1,2,0],[0,0,3],[4,0,0]])
sA = sparse.csr_matrix(A)
print (sA)
# (0, 0) 1
# (0, 1) 2
# (1, 2) 3
# (2, 0) 4
idx, idy, val = sparse.find(sA)
print(idx, idy, val)
#[0 2 0 1] [0 0 1 2] [1 4 2 3]
To tensorflow
#merge idx and idy array to convert to [idx, idy] matrix
full_indices = tf.stack([idx, idy], axis=1)
#Output matrix size
depth_x = 3
depth_y = 3
# sparse to dense matrix
dense = tf.sparse_to_dense(full_indices,tf.constant([depth_x,depth_y]), val, validate_indices=False)
with tf.Session() as sess:
print(sess.run(dense))
#[[1 2 0]
# [0 0 3]
# [4 0 0]]
Upvotes: 1