Reputation: 893
I have a numpy array of size 31x36
and i want to transform into pandas dataframe in order to process it. I am trying to convert it using the following code:
pd.DataFrame(data=matrix,
index=np.array(range(1, 31)),
columns=np.array(range(1, 36)))
However, I am receiving the following error:
ValueError: Shape of passed values is (36, 31), indices imply (35, 30)
How can I solve the issue and transform it properly?
Upvotes: 13
Views: 50343
Reputation: 394041
As to why what you tried failed, the ranges are off by 1
pd.DataFrame(data=matrix,
index=np.array(range(1, 32)),
columns=np.array(range(1, 37)))
As the last value isn't included in the range
Actually looking at what you're doing you could've just done:
pd.DataFrame(data=matrix,
index=np.arange(1, 32)),
columns=np.arange(1, 37)))
Or in pure pandas
:
pd.DataFrame(data=matrix,
index=pd.RangeIndex(range(1, 32)),
columns=pd.RangeIndex(range(1, 37)))
Also if you don't specify the index and column params, an auto-generated index and columns is made, which will start from 0
. Unclear why you need them to start from 1
You could also have not passed the index and column params and just modified them after construction:
In[9]:
df = pd.DataFrame(adaption)
df.columns = df.columns+1
df.index = df.index + 1
df
Out[9]:
1 2 3 4 5 6
1 -2.219072 -1.637188 0.497752 -1.486244 1.702908 0.331697
2 -0.586996 0.040052 1.021568 0.783492 -1.263685 -0.192921
3 -0.605922 0.856685 -0.592779 -0.584826 1.196066 0.724332
4 -0.226160 -0.734373 -0.849138 0.776883 -0.160852 0.403073
5 -0.081573 -1.805827 -0.755215 -0.324553 -0.150827 -0.102148
Upvotes: 8
Reputation: 164673
You meet an error because the end
argument in range(start, end)
is non-inclusive. You have a couple of options to account for this:
Just use df = pd.DataFrame(matrix)
. The pd.DataFrame
constructor adds integer indices implicitly.
matrix.shape
gives a tuple of row and column count, so you need not specify them manually. For example:
df = pd.DataFrame(matrix, index=range(matrix.shape[0]),
columns=range(matrix.shape[1]))
If you need to start at 1
, remember to add 1:
df = pd.DataFrame(matrix, index=range(1, matrix.shape[0] + 1),
columns=range(1, matrix.shape[1] + 1))
Upvotes: 5
Reputation: 5080
In addition to the above answer,range(1, X)
describes the set of numbers from 1
up to X-1
inclusive. You need to use range(1, 32)
and range(1, 37)
to do what you describe.
Upvotes: 1