Reputation: 79
I have two arrays of corresponding data (x and y) that I plot as above on a log-log plot. The data is currently too granular and I would like to bin them to get a smoother relationship. Could I get some guidance on how I can bin along the x-axis, in exponential bin sizes, so that it appears linear on the log-log scale?
For example, if the first bin is of range x = 10^0 to 10^1, I want to collect all y-values with corresponding x in that range and average them into one value for that bin. I don't think np.hist or plt.hist quite does the trick, since they do binning by counting occurrences.
Edit: For context, if it helps, the above plot is an assortativity plot that plots the in vs out degree of a certain network.
Upvotes: 1
Views: 5775
Reputation: 339670
You may use scipy.stats.binned_statistic
to get the mean of the data in each bin. The bins would best be created via numpy.logspace
. You may then plot those means e.g. as horiziontal lines spanning the bin width or as scatter at the mean position.
import numpy as np; np.random.seed(42)
from scipy.stats import binned_statistic
import matplotlib.pyplot as plt
x = np.logspace(0,5,300)
y = np.logspace(0,5,300)+np.random.rand(300)*1.e3
fig, ax = plt.subplots()
ax.scatter(x,y, s=9)
s, edges, _ = binned_statistic(x,y, statistic='mean', bins=np.logspace(0,5,6))
ys = np.repeat(s,2)
xs = np.repeat(edges,2)[1:-1]
ax.hlines(s,edges[:-1],edges[1:], color="crimson", )
for e in edges:
ax.axvline(e, color="grey", linestyle="--")
ax.scatter(edges[:-1]+np.diff(edges)/2, s, c="limegreen", zorder=3)
ax.set_xscale("log")
ax.set_yscale("log")
plt.show()
Upvotes: 4
Reputation: 11602
You can achieve this with pandas. The idea is to assign each X value to an interval using np.digitize
. Since you are using a log scale, it makes sense to use np.logspace
to choose intervals of exponentially changing lengths. Finally, you can group X values in each interval and compute mean Y values.
import pandas as pd
import numpy as np
x_max = 10
xs = np.exp(x_max * np.random.rand(1000))
ys = np.exp(np.random.rand(1000))
df = pd.DataFrame({
'X': xs,
'Y': ys,
})
df['Xbins'] = np.digitize(df.X, np.logspace(0, x_max, 30, base=np.exp(1)))
df['Ymean'] = df.groupby('Xbins').Y.transform('mean')
df.plot(kind='scatter', x='X', y='Ymean')
Upvotes: 1