nehaj
nehaj

Reputation: 51

I want to encode the column values in pandas dataframe

I want to encode the column values in pandas dataframe, such as the all the letters should be converted to a single letter(eg., 'vault' to 'NNNNN' , 'Nan123' to 'NNNDDD').

I'm thinking of something like this:

df['TransDetails'] = df['TransDetails'].str.replace('A', 'N')

My data:

    TransDetails
0   NEFT-PUNB0315500-JITENDER SING
1   NEFT-UTIB0CCH274-VIRENDER KUMA
2   NEFT-UTIB0CCH274-SUNITA DEVI
3   NEFT-PUNB0315500-AMLASH KUMAR
4   NEFT-PUNB0109800-FARIDUDDEN
5   NEFT-PUNB0109800-IDREESH
6   NEFT-PUNB0315500-BUDDHU
7   NEFT-UTIB0CCH274-SAKIL AHAMAD
8   NEFT-UTIB0CCH274-NAIM AHAMAD
9   NEFT-UTIB0CCH274-SALIM AHAMAD
10  NEFT-UTIB0CCH274-NADIM AHAMAD

How can I convert all the column values in such codes? Thanks in advance

Upvotes: 0

Views: 1629

Answers (2)

Anton vBR
Anton vBR

Reputation: 18914

One way would be to use df.replace(). You would avoid changing numeric columns this way.

df.replace('[A-Za-z]','N', regex=True).replace('\d','D', regex=True)

Full example with a numeric column called D, A non-numeric called N and TransDetails.

import pandas as pd

data = '''\
D,N,TransDetails
1,ABC,NEFT-PUNB0315500-JITENDER SING
1,123,NEFT-UTIB0CCH274-VIRENDER KUMA
1,123,NEFT-UTIB0CCH274-SUNITA DEVI
1,123,NEFT-PUNB0315500-AMLASH KUMAR
1,123,NEFT-PUNB0109800-FARIDUDDEN
1,123,NEFT-PUNB0109800-IDREESH
1,123,NEFT-PUNB0315500-BUDDHU
1,123,NEFT-UTIB0CCH274-SAKIL AHAMAD
1,123,NEFT-UTIB0CCH274-NAIM AHAMAD
1,123,NEFT-UTIB0CCH274-SALIM AHAMAD
1,123,NEFT-UTIB0CCH274-NADIM AHAMAD'''

fileobj = pd.compat.StringIO(data) # or 'path/to/csv'
df = pd.read_csv(fileobj)
df = df.replace('[A-Za-z]','N', regex=True).replace('\d','D', regex=True)
print(df)

Returns:

    D    N                    TransDetails
0   1  NNN  NNNN-NNNNDDDDDDD-NNNNNNNN NNNN
1   1  DDD  NNNN-NNNNDNNNDDD-NNNNNNNN NNNN
2   1  DDD    NNNN-NNNNDNNNDDD-NNNNNN NNNN
3   1  DDD   NNNN-NNNNDDDDDDD-NNNNNN NNNNN
4   1  DDD     NNNN-NNNNDDDDDDD-NNNNNNNNNN
5   1  DDD        NNNN-NNNNDDDDDDD-NNNNNNN
6   1  DDD         NNNN-NNNNDDDDDDD-NNNNNN
7   1  DDD   NNNN-NNNNDNNNDDD-NNNNN NNNNNN
8   1  DDD    NNNN-NNNNDNNNDDD-NNNN NNNNNN
9   1  DDD   NNNN-NNNNDNNNDDD-NNNNN NNNNNN
10  1  DDD   NNNN-NNNNDNNNDDD-NNNNN NNNNNN

Upvotes: 1

James
James

Reputation: 36756

You can use a regular expression to handle the replacement.

df['TransDetails'] = df['TransDetails'].str.replace('[A-Za-z]', 'N')
df['TransDetails'] = df['TransDetails'].str.replace('\d', 'D')

df
# returns:
                      TransDetails
0   NNNN-NNNNDDDDDDD-NNNNNNNN NNNN
1   NNNN-NNNNDNNNDDD-NNNNNNNN NNNN
2     NNNN-NNNNDNNNDDD-NNNNNN NNNN
3    NNNN-NNNNDDDDDDD-NNNNNN NNNNN
4      NNNN-NNNNDDDDDDD-NNNNNNNNNN
5         NNNN-NNNNDDDDDDD-NNNNNNN
6          NNNN-NNNNDDDDDDD-NNNNNN
7    NNNN-NNNNDNNNDDD-NNNNN NNNNNN
8     NNNN-NNNNDNNNDDD-NNNN NNNNNN
9    NNNN-NNNNDNNNDDD-NNNNN NNNNNN
10   NNNN-NNNNDNNNDDD-NNNNN NNNNNN

Upvotes: 1

Related Questions