Reputation: 653
In a dictionary with information about a string in a text file, where keys are the strings and values are the names of the files.
Dict1 = {'str1A':'file1', 'str1B':'file1', 'str1C':'file1', 'str1D':'file1', 'str2A':'file2', 'str2B':'file2', 'str2C':'file2', 'str2D':'file2', 'str2D':'file2', 'str3A':'file3',
'str3B':'file3','str3C':'file3', 'str3D':'file3', 'str3D':'file3' , 'str4A':'file4', 'str4B':'file4', 'str4C':'file4', 'str4D':'file4', 'str4E':'file4'}
Another dictionary contains information about the best match for the strings from the text.
Dict2 = {'str1A':'jump', 'str1B':'fly', 'str1C':'swim', 'str2A':'jump', 'str2B':'fly', 'str2C':'swim', 'str2D':'run', 'str3A':'jump', 'str3B':'fly', 'str3C':'swim', 'str3D':'run'}
The third dictionary contains information about the percentage of occurrence of the string in the text.
Dict3 = {'str1A':'90', 'str1B':'60', 'str1C':'30', 'str2A':'70', 'str2B':'30', 'str2C':'60', 'str2D':'40', 'str3A':'10', 'str3B':'90', 'str3C':'70', 'str3D':'90'}
Now my aims are to use the information of these different dictionaries to generate a dataframe like this:
jump fly swim run
file1 90 60 30 NA
file2 70 30 60 40
file3 10 90 70 90
To this, I started the script but I am stuck:
col_file = ['str', 'file']
df_origin = pd.DataFrame(Dict1.items(), columns=col_file)
#print df_origin
col_bmatch = ['str', 'text']
df_bmatch = pd.DataFrame(Dict2.items(), columns=col_bmatch)
#print df_bmatch
col_percent = ['str', 'percent']
df_percent = pd.DataFrame(Dict3.items(), columns=col_percent)
#print df_percent
This block was removed from script:
df_origin['text'] = df_origin['str'].map(df_bmatch.set_index('str')['text']) df_origin['percent'] = df_origin['str'].map(df_percent.set_index('str')['percent'])
And substituted to:
data = {}
for k, col in Dict1.items():
if k in Dict1 and k not in Dict3:
data.setdefault(k, {})[col] = "NA"
elif k in Dict1 and k in Dict3:
data.setdefault(k, {})[col] = Dict3[k]
df = pd.DataFrame(data)
print(df)
But the final result was not very exact:
str1A str1B str1C str1D str2A str2B str2C str2D str3A str3B \
file1 90 60 30 NO NaN NaN NaN NaN NaN NaN
file2 NaN NaN NaN NaN 70 30 60 40 NaN NaN
file3 NaN NaN NaN NaN NaN NaN NaN NaN 10 90
file4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
str3C str3D str4A str4B stre4C str4D str4E
file1 NaN NaN NaN NaN NaN NaN NaN
file2 NaN NaN NaN NaN NaN NaN NaN
file3 70 90 NaN NaN NaN NaN NaN
file4 NaN NaN NO NO NO NO NO
But the expected table is:
jump fly swim run sit
file1 90 60 30 NA NA
file2 70 30 60 40 NA
file3 10 90 70 90 NA
file4 NA NA NA NA NA
Where the string in file4 where not detected.
Blosk removed
print df_origin # str file text percent # 0 str2B file2 fly 30 # 1 str2C file2 swim 60 # 2 str3C file3 swim 70 # 3 str3B file3 fly 90 # 4 str3D file3 run 90 # 5 str2D file2 run 40 # 6 str3A file3 jump 10 # 7 str1D file1 NaN NaN # 8 str1C file1 swim 30 # 9 str1B file1 fly 60 # 10 str1A file1 jump 90 # 11 str2A file2 jump 70
Here relies the problem
print pd.get_dummies(df_origin.set_index('file')['text']).max(level=0).max(level=0, axis=1)
But the only result that I get is this:
fly jump run swim
file
file2 1 1 1 1
file3 1 1 1 1
file1 1 1 0 1
As I can understand, pd.getdummies groups the field 'file' from my df_origin and uses 'text' to check their presence.
How can I redirect the command to plot the columns 'percent' in my df_origin dataframe?
Upvotes: 1
Views: 103
Reputation: 59731
Try this:
import pandas as pd
Dict1 = {'str1A':'file1', 'str1B':'file1', 'str1C':'file1', 'str1D':'file1', 'str2A':'file2', 'str2B':'file2', 'str2C':'file2', 'str2D':'file2', 'str2D':'file2', 'str3A':'file3', 'str3B':'file3','str3C':'file3', 'str3D':'file3', 'str3D':'file3' , 'str4A':'file4', 'str4B':'file4', 'str4C':'file4', 'str4D':'file4', 'str4E':'file4'}
Dict2 = {'str1A':'jump', 'str1B':'fly', 'str1C':'swim', 'str2A':'jump', 'str2B':'fly', 'str2C':'swim', 'str2D':'run', 'str3A':'jump', 'str3B':'fly', 'str3C':'swim', 'str3D':'run'}
Dict3 = {'str1A':'90', 'str1B':'60', 'str1C':'30', 'str2A':'70', 'str2B':'30', 'str2C':'60', 'str2D':'40', 'str3A':'10', 'str3B':'90', 'str3C':'70', 'str3D':'90'}
data = {}
for k, col in Dict2.items():
if k not in Dict1 or k not in Dict3:
continue
data.setdefault(col, {})[Dict1[k]] = Dict3[k]
df = pd.DataFrame(data, index=sorted(set(Dict1.values())), columns=sorted(set(Dict2.values())))
print(df)
Output:
fly jump run swim
file1 60 90 NaN 30
file2 30 70 40 60
file3 90 10 90 70
file4 NaN NaN NaN NaN
Upvotes: 2
Reputation: 7994
Using pivot
.
Dict1 = {'str1A':'file1', 'str1B':'file1', 'str1C':'file1', 'str1D':'file1', 'str2A':'file2', 'str2B':'file2', 'str2C':'file2', 'str2D':'file2', 'str2D':'file2', 'str3A':'file3', 'str3B':'file3','str3C':'file3', 'str3D':'file3', 'str3D':'file3'}
Dict2 = {'str1A':'jump', 'str1B':'fly', 'str1C':'swim', 'str2A':'jump', 'str2B':'fly', 'str2C':'swim', 'str2D':'run', 'str3A':'jump', 'str3B':'fly', 'str3C':'swim', 'str3D':'run'}
Dict3 = {'str1A':'90', 'str1B':'60', 'str1C':'30', 'str2A':'70', 'str2B':'30', 'str2C':'60', 'str2D':'40', 'str3A':'10', 'str3B':'90', 'str3C':'70', 'str3D':'90'}
col_file = ['str', 'file']
df_origin = pd.DataFrame.from_dict(Dict1, orient="index")
df_bmatch = pd.DataFrame.from_dict(Dict2, orient="index")
df_percent = pd.DataFrame.from_dict(Dict3, orient="index")
df_temp = pd.concat([df_origin, df_bmatch, df_percent], axis=1)
df_temp.columns = ["col1", "col2", "col3"]
col1 col2 col3
str1A file1 jump 90
str1B file1 fly 60
str1C file1 swim 30
str1D file1 NaN NaN
str2A file2 jump 70
str2B file2 fly 30
str2C file2 swim 60
str2D file2 run 40
str3A file3 jump 10
str3B file3 fly 90
str3C file3 swim 70
str3D file3 run 90
df_temp.pivot(values="col3", columns="col2", index="col1").drop([np.nan], axis=1)
col2 fly jump run swim
col1
file1 60 90 None 30
file2 30 70 40 60
file3 90 10 90 70
Upvotes: 2