Reputation: 31
I have been playing around with basic examples of proofs in Isabelle.
Consider the following simple proof:
lemma
fixes n::nat
shows "n*(n+1) = n^2 + n"
by simp
It seems to me that a powerful proof assistant like Isabelle should be able to prove this lemma without much guidance. However, I was surprised to find out that Isabelle actually fails at applying the rule simp here (I also tried other "generic" rules like simp_all, auto, force, blast but the result is the same).
If I replace the last line by the following, then it works out:
by (simp add: power2_eq_square)
My concern is that I feel like I shouldn't have had to tell the system about the specific rule power2_eq_square to complete this proof.
Playing around with similar trivial examples, I found that simp is able to prove
n*(n+2)=n*n+n*2
but fails with
n*(n+3)=n*n+n*3
The last example is proven
by (simp add: distrib_left)
It is a complete mystery to me why I need to specify distrib_left in that second example, but not in the first (why is that?).
I have given these examples not for their own sake, but mainly to illustrate my main question:
Is there a way to automate the verification of routine algebraic identities such as the above in Isabelle? If there isn't, then why not? What are the technical obstacles?
Upvotes: 3
Views: 436
Reputation: 131
Daily proof work indeed often stumbles over »routine algebraic identities«; but after some practical experience one usually develops some intuition how to solve such problems effectively. A pattern I have developed over the years, by example:
context semidom
begin
lemma "a * (b ^ 2 + c) + 2 = a * b * b + c * a + 2"
A typical explorative proof starts with
apply auto
Then associativity and commutative are considered also
apply (auto simp add: ac_simps)
Then more algebaic normalizing rules are applied
apply (auto simp add: algebra_simps)
The last gap is then easily filled by sledgehammer
apply (simp add: power2_eq_square)
After that, the proof can be compactified
by (simp add: algebra_simps power2_eq_square)
Upvotes: 4
Reputation: 25782
The lemma
lemma power2_eq_square: "a^2 = a * a"
is not a good rewrite rule in general, as it will easily blow up the size of terms. So it is expected that a term rewriting based automation like simp
will not apply this without you telling it to.
What you want is some sort of proof search, and Isabelle provides that: After writing your lemma, you can invoke the sledgehammer
tool, and it will readily and quickly find the proof for you:
Sledgehammering...
Proof found...
"z3": Try this: by (simp add: power2_eq_square) (1 ms)
"cvc4": Try this: by (simp add: power2_eq_square) (5 ms)
Upvotes: 2