Reputation: 1857
For example,I have a df
with nan
and use the following method to fillna
.
import pandas as pd
a = [[2.0, 10, 4.2], ['b', 70, 0.03], ['x', ]]
df = pd.DataFrame(a)
print(df)
df.fillna(int(0),inplace=True)
print('fillna df\n',df)
dtype_df = df.dtypes.reset_index()
OUTPUT:
0 1 2
0 2 10.0 4.20
1 b 70.0 0.03
2 x NaN NaN
fillna df
0 1 2
0 2 10.0 4.20
1 b 70.0 0.03
2 x 0.0 0.00
col type
0 0 object
1 1 float64
2 2 float64
Actually,I want the column 1
maintain the type of int
instead of float
.
My desired output:
fillna df
0 1 2
0 2 10 4.20
1 b 70 0.03
2 x 0 0.00
col type
0 0 object
1 1 int64
2 2 float64
So how to do it?
Upvotes: 2
Views: 369
Reputation: 402673
Try adding downcast='infer'
to downcast any eligible columns:
df.fillna(0, downcast='infer')
0 1 2
0 2 10 4.20
1 b 70 0.03
2 x 0 0.00
And the corresponding dtypes
are
0 object
1 int64
2 float64
dtype: object
Upvotes: 5