Reputation: 5097
I have a dataframe called df
which has the following columns header of data:
date A B C D E F G H I
07/03/2016 2.08 1 NaN NaN 1029 2 2.65 4861688 -0.0388
08/03/2016 2.20 1 NaN NaN 1089 2 2.20 5770819 -0.0447
: :
09/03/2016 2.14 1 NaN NaN 1059 2 2.01 5547959 -0.0514
10/03/2016 2.25 1 NaN NaN 1089 2 1.95 4064482 -0.0520
Is there a way to change the order of the columns so that column F is moved to a position that is after column H. The resulting df
would look like:
date A B C D E F G H F I
07/03/2016 2.08 1 NaN NaN 1029 2 2.65 4861688 2 -0.0388
08/03/2016 2.20 1 NaN NaN 1089 2 2.20 5770819 2 -0.0447
: :
09/03/2016 2.14 1 NaN NaN 1059 2 2.01 5547959 2 -0.0514
10/03/2016 2.25 1 NaN NaN 1089 2 1.95 4064482 2 -0.0520
Upvotes: 9
Views: 16353
Reputation: 954
Not for the author of this question, but perhaps for others.
col_list = df.columns.tolist() # list the columns in the df
col_list.insert(8, col_list.pop(col_list.index('F'))) # Assign new position (i.e. 8) for "F"
df = df.reindex(columns=col_list) # Now move 'F' to it's new position
Upvotes: 4
Reputation: 402323
Use df.insert
with df.columns.get_loc
to dynamically determine the position of insertion.
col = df['F'] # df.pop('F') # if you want it removed
df.insert(df.columns.get_loc('H') + 1, col.name, col, allow_duplicates=True)
df
date A B C D E F G H F I
0 07/03/2016 2.08 1 NaN NaN 1029 2 2.65 4861688 2 -0.0388
1 08/03/2016 2.20 1 NaN NaN 1089 2 2.20 5770819 2 -0.0447
...
Upvotes: 10
Reputation: 164623
This is one way via pd.DataFrame.iloc
, which uses integer-location based indexing for selecting by position.
It's also a gentle reminder that pandas
integer indexing is based on numpy
.
import pandas as pd
import numpy as np
df = pd.DataFrame(columns=list('ABCDEFGHI'))
cols = np.insert(np.arange(df.shape[1]),
df.columns.get_loc('H')+1,
df.columns.get_loc('F'))
res = df.iloc[:, cols]
print(res)
Empty DataFrame
Columns: [A, B, C, D, E, F, G, H, F, I]
Index: []
Upvotes: 1
Reputation: 332
Use this :
df = df[['date','A','B','C','D','E','F','G','H','F','I']]
--- Edit
columnsName = list(df.columns)
F, H = columnsName.index('F'), columnsName.index('H')
columnsName[F], columnsName[H] = columnsName[H],columnsName[F]
df = df[columnsName]
Upvotes: 5
Reputation: 16404
You can use:
df.reindex(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'F', 'I'], axis=1)
Upvotes: 0