aferjani
aferjani

Reputation: 115

Reflection padding Conv2D

I'm using keras to build a convolutional neural network for image segmentation and I want to use "reflection padding" instead of padding "same" but I cannot find a way to to do it in keras.

inputs = Input((num_channels, img_rows, img_cols))
conv1=Conv2D(32,3,padding='same',kernel_initializer='he_uniform',data_format='channels_first')(inputs)

Is there a way to implement a reflection layer and insert it in a keras model ?

Upvotes: 6

Views: 16816

Answers (5)

Harshana Sumedha
Harshana Sumedha

Reputation: 1

The accepted answer does not work if we have undefined dimensions! There will be an error when compute_output_shape function is called. Here is the simple work around to that.

class ReflectionPadding2D(Layer):
    def __init__(self, padding=(1, 1), **kwargs):
        self.padding = tuple(padding)
        self.input_spec = [InputSpec(ndim=4)]
        super(ReflectionPadding2D, self).__init__(**kwargs)

    def compute_output_shape(self, s):
        if s[1] == None:
            return (None, None, None, s[3])
        return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])

    def call(self, x, mask=None):
        w_pad, h_pad = self.padding
        return tf.pad(x, [[0, 0], [h_pad, h_pad], [w_pad, w_pad], [0, 0]], 'REFLECT')

    def get_config(self):
        config = super(ReflectionPadding2D, self).get_config()
        print(config)
        return config

Upvotes: 0

jeevaa_v
jeevaa_v

Reputation: 423

The accepted answer above is not working in the current Keras version. Here is the version that's working:

class ReflectionPadding2D(Layer):
    def __init__(self, padding=(1, 1), **kwargs):
        self.padding = tuple(padding)
        self.input_spec = [InputSpec(ndim=4)]
        super(ReflectionPadding2D, self).__init__(**kwargs)

    def compute_output_shape(self, s):
        """ If you are using "channels_last" configuration"""
        return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])

    def call(self, x, mask=None):
        w_pad,h_pad = self.padding
        return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')

Upvotes: 10

Christof Henkel
Christof Henkel

Reputation: 370

import tensorflow as tf
from keras.layers import Lambda

inp_padded = Lambda(lambda x: tf.pad(x, [[0,0], [27,27], [27,27], [0,0]], 'REFLECT'))(inp)

The solution from Akihiko did not work with the new keras version, so I came up with my own. The snippet pads a batch of 202x202x3 images to 256x256x3

Upvotes: 2

aferjani
aferjani

Reputation: 115

Found the solution! We have only to create a new class that takes a layer as input and use tensorflow predefined function to do it.

import tensorflow as tf
from keras.engine.topology import Layer
from keras.engine import InputSpec

class ReflectionPadding2D(Layer):
    def __init__(self, padding=(1, 1), **kwargs):
        self.padding = tuple(padding)
        self.input_spec = [InputSpec(ndim=4)]
        super(ReflectionPadding2D, self).__init__(**kwargs)

    def get_output_shape_for(self, s):
        """ If you are using "channels_last" configuration"""
        return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])

    def call(self, x, mask=None):
        w_pad,h_pad = self.padding
        return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')

# a little Demo
inputs = Input((img_rows, img_cols, num_channels))
padded_inputs= ReflectionPadding2D(padding=(1,1))(inputs)
conv1 = Conv2D(32, 3, padding='valid', kernel_initializer='he_uniform',
               data_format='channels_last')(padded_inputs)

Upvotes: 3

Daniel GL
Daniel GL

Reputation: 1249

As you can check in the documentation there is no such 'reflect' padding. Only 'same' and 'valid' are implemented in keras.

You maybe try to implemented on your own or find if somebody already did it. You should base yourself in the Conv2D class and check where self.padding member variable is used.

Upvotes: 0

Related Questions