Reputation: 426
I am trying to implement a Matrix class with linear algebraic operations. I want to make the class available for a few value types like uint
, uchar
, float
, double
.
The header looks as follows:
template<typename T>
class Matrix{
public:
Matrix(int width, int height);
Matrix(const Matrix<T> & other);
virtual ~Matrix();
unsigned int width() const { return width_; }
unsigned int height() const { return height_; };
T * data() const { return data_ptr_; };
private:
T * data_ptr_;
unsigned int width_;
unsigned int height_;
}
The source file looks as follows.
template<typename T>
Matrix<T>::Matrix(int width, int height ): width_(width), height_(height)
{
data_ptr_ = new T[width * height];
}
template<typename T>
Matrix<T>::Matrix(const Matrix<T> & other): Matrix(other.width(), other.height() )
{
memcpy(data_ptr_, other.data(), width_ * height_ * sizeof(T);
}
template<typename T>
Matrix<T>::~Matrix()
{
delete []data_ptr_;
}
template class Matrix<double>;
template class Matrix<float>;
...
Now I want to define an operator +
which will return a Matrix
of the type which an ordinary c++ conversion does when adding two values, i.e.
Matrix<double> + Matrix<float> => Matrix<double>
Matrix<int> + Matrix<float> => Matrix<float>
and I want to be able to do this without explicit conversions. For example
Matrix<float> float_matrix(10,20);
Matrix<int> int_matrix(10,20);
auto sum_matrix = float_matrix + int_matrix;
so the sum should have type float
.
I tried 2 methods with no success, however.
Method 1
Define operator +
as
//inside class definition
Matrix<T> operator+(const Matrix<T> &other) const;
and define implicit constructors like
//inside the class declaration
template<typename K>
Matrix(const Matrix<K> & other);
and instantiate them only in the obvious hierarchical order:
uchar-> uint->float->double
, however I still have to manually cast operands of different types.
Method 2
Define operator +
as
//inside the class declaration
template<typename K, typename R>
Matrix<R> operator+(const Matrix<K> &other) const;
and write specializations for each case, however, I could not get the compiler to correctly deduce the template arguments.
Neither of methods seem to be correct.
Can anyone point me a direction?
Upvotes: 0
Views: 341
Reputation: 66200
Variant of the method 3 from MathanOliver: define operator+()
(off topic suggestion: ever define operator+=()
as method and operator+()
as external function) not as method but as external function (you can make it friend to Matrix
if needed).
template <typename T1, typename T2,
typename Tr = decltype(std::declval<T1>() + std::declval<T2>())>
Matrix<Tr> operator+ (Matrix<T1> const & m1, Matrix<T2> const & m2)
{
// something useful
return {m1.width(), m1.height()};
}
The following is a full compiling example
#include <cstring>
#include <utility>
template <typename T>
class Matrix
{
public:
Matrix(unsigned int width, unsigned int height)
: width_(width), height_(height)
{ data_ptr_ = new T[width * height]; }
Matrix(const Matrix<T> & other)
: Matrix(other.width(), other.height() )
{ std::memcpy(data_ptr_, other.data(), width_ * height_ * sizeof(T)); }
virtual ~Matrix()
{ delete []data_ptr_; }
unsigned int width() const
{ return width_; }
unsigned int height() const
{ return height_; };
T * data() const
{ return data_ptr_; };
private:
T * data_ptr_;
unsigned int width_;
unsigned int height_;
};
template <typename T1, typename T2,
typename Tr = decltype(std::declval<T1>() + std::declval<T2>())>
Matrix<Tr> operator+ (Matrix<T1> const & m1, Matrix<T2> const & m2)
{
return {m1.width(), m1.height()};
}
int main ()
{
Matrix<int> m1{1, 2};
Matrix<float> m2{1, 2};
auto m3 = m1 + m2;
auto m4 = m2 + m1;
static_assert( std::is_same<decltype(m3), Matrix<float>>{}, "!" );
static_assert( std::is_same<decltype(m4), Matrix<float>>{}, "!" );
return 0;
}
Obtaining the type of the returned matrix as default template value (Tr
) you can explicit a different type, if you want, as follows
auto m5 = operator+<int, float, int>(m1, m2);
static_assert( std::is_same<decltype(m5), Matrix<int>>{}, "!" );
Upvotes: 1
Reputation: 180424
You can use method 3 and use C++11's auto return type deduction to figure out the type for you. Using
template<typename K>
auto operator+(const Matrix<K> &other) const -> Matrix<decltype(std::declval<T>() + std::declval<K>())>;
This says that the matrix returned will have the type of whatever a T
added to a K
would be.
You won't be able to make custom rules with this but it will follow the standard promotion/conversion rules.
Upvotes: 3