Reputation: 215
My question has to do with using lookahead and lookbehind constructs in Regular Expressions with If-Then-Else Conditionals in combination with str_extract.
I have a string called UNIT in the table below that needs to be broken into its 3 component parts. The format is non-standard and I am using regex and str_extract to create new columns with each component.
I can easily extract the start (3A, 3C, etc.) and ends of the string (E, A), but the middle component is a bit more difficult. It can be 1-3 digits, or the two character code of SK, SD, or HH. I can use the code below individually, but the latter line overwrites the former.
So, my question is, how can I use the If-Then-Else Conditionals in Regular Expressions (?(?=regex)then|else) in combination with str_extract to get df2 from df1?
df1$C2 = str_extract(df1$UNIT,"(?<=[:upper:])\\d*(?<![:upper:])")
df1$C2 = str_extract(df1$UNIT, "S.$")
df1
ID UNIT
1 3ASD
2 3C14E
3 3D5E
4 3E15E
5 3ESK
6 3B14A
7 3BHHQ2
8 3E101
df2
ID UNIT C1 C2 C3
1 3ASD 3A SD NA
2 3C14E 3C 14 E
3 3D5E 3D 5 E
4 3E15E 3E 15 E
5 3ESK 3E SK NA
6 3B14A 3B 14 A
7 3BHHQ2 3B HH Q2
8 3E101 3E 101 NA
Upvotes: 2
Views: 82
Reputation: 79338
You can read in as a table:
cbind(df1,read.table(text=sub("(..)(\\d+|SK|SD|HH)(.*)","\\1 \\2 \\3",df1$UNIT),fill=T,h=F,col.names = c("C1","C2","C3"),na.strings = ""))
ID UNIT C1 C2 C3
1 1 3ASD 3A SD <NA>
2 2 3C14E 3C 14 E
3 3 3D5E 3D 5 E
4 4 3E15E 3E 15 E
5 5 3ESK 3E SK <NA>
6 6 3B14A 3B 14 A
7 7 3BHHQ2 3B HH Q2
8 8 3E101 3E 101 <NA>
Upvotes: 1
Reputation: 215
Problem solved using the following code:
df2$C1= str_extract(df1$Unit, "^[:digit:][:upper:]")
#if the start of the string is a digit and upper case letter then extract it into col C1
df2$C2= str_extract(df1$Unit,"(?<=[:upper:])\\d*(?<![:upper:])|(?<=[:upper:])[[:upper:]][[:upper:]](?<=[:upper:])")
#if a digit follows an uppercase letter or is behind another uppercase letter then extract all digits in between and extract it into C2
#OR if two uppercase letters follow an uppercase letter or come before another uppercase letter then extract all letters in between and extract it into C2
df2$C3= str_extract(df1$Unit, "(?<=[:digit:])[A-E]$|Q.$")
#if a the last a letter is A-E and is preceded by a digit then extract the letter into C3
#OR if the last character is preceded by the letter Q then extract Q and the character
Upvotes: 0
Reputation: 627488
I think you can "encode" the conditions in a single regex wrapping the separate values with capturing groups and then use str_match
to actually access those captures to later use them to create the columns:
library(stringr)
df <- data.frame(ID=c(1,2,3,4,5,6,7,8), UNIT=c("3ASD","3C14E","3D5E","3E15E","3ESK","3B14A","3BHHQ2","3E101"))
rx = "^([0-9][[:upper:]])([0-9]{1,3}|S[KD]|HH)([[:upper:]][0-9]*)?$"
match_table <- str_match(df$UNIT, rx)
df$C1 <- match_table[,2]
df$C2 <- match_table[,3]
df$C3 <- match_table[,4]
> df
ID UNIT C1 C2 C3
1 1 3ASD 3A SD <NA>
2 2 3C14E 3C 14 E
3 3 3D5E 3D 5 E
4 4 3E15E 3E 15 E
5 5 3ESK 3E SK <NA>
6 6 3B14A 3B 14 A
7 7 3BHHQ2 3B HH Q2
8 8 3E101 3E 101 <NA>
See the regex demo.
Details
^
- start of string([0-9][[:upper:]])
- Group C1
: a digit and then an uppercase letter([0-9]{1,3}|S[KD]|HH)
- Group C2
: 1, 2 or 3 digits, or SK
, SD
or HH
([[:upper:]][0-9]*)?
- an optional Group C3
: an uppercase letter followed with 0+ digits$
- end of string,Upvotes: 2