real
real

Reputation: 669

Generalizing over adding unsigned and signed integer types

I want to have a Rust function that allows adding an u32 (u64, u128) type to an i32 (i64, i128) type while checking for overflow.

My implementation:

/// Add u32 to i32. In case of an overflow, return None.
fn checked_add_i32_u32(a: i32, b: u32) -> Option<i32> {
    let b_half = (b / 2) as i32;
    let b_rem = (b % 2) as i32;

    Some(a.checked_add(b_half)?.checked_add(b_half)?
        .checked_add(b_rem)?)
}

/// Add u64 to i64. In case of an overflow, return None.
fn checked_add_i64_u64(a: i64, b: u64) -> Option<i64> {
    let b_half = (b / 2) as i64;
    let b_rem = (b % 2) as i64;

    Some(a.checked_add(b_half)?.checked_add(b_half)?
        .checked_add(b_rem)?)
}

I have another similar one that does the same for u128 and i128. I feel like I am repeating myself. My tests for those functions also look very similar.

Is there a way I could refactor my code and have just one function instead? I am not sure how to generalize over the relationship between u32 and i32 (or u64 and i64, u128 and i128).

Upvotes: 6

Views: 1071

Answers (1)

Boiethios
Boiethios

Reputation: 42749

You can use a macro:

trait CustomAdd: Copy {
    type Unsigned;

    fn my_checked_add(self, b: Self::Unsigned) -> Option<Self>;
}

macro_rules! impl_custom_add {
    ( $i:ty, $u:ty ) => {
        impl CustomAdd for $i {
            type Unsigned = $u;

            fn my_checked_add(self, b: $u) -> Option<$i> {
                let b_half = (b / 2) as $i;
                let b_rem = (b % 2) as $i;

                Some(self.checked_add(b_half)?.checked_add(b_half)?
                    .checked_add(b_rem)?)
            }
        }
    }
}

impl_custom_add!(i32, u32);
impl_custom_add!(i64, u64);
// etc.

#[test]
fn tests() {
    assert_eq!(123.my_checked_add(10_u32), Some(133));
}

Upvotes: 7

Related Questions