Reputation: 41
I am trying to write a function in R to summarize a table. The following is an example function and I am using the Iris data as a test.
test_func <- function(data, by_var_nm) {
by_var_nm <- deparse(substitute(by_var_nm))
tbl_test_sum <- data %>%
group_by(data[[by_var_nm]]) %>%
summarise(
count = n()
)
tbl_test_sum
}
test_func(iris, Species)
As you could see, the output in the following section has a problem, in which the first variable in the table is called "data[[by_var_nm]]" instead of "Species". Is there any way that I could maintain the original variable name during the summarizing process?
# A tibble: 3 x 2
`data[[by_var_nm]]` count
<fct> <int>
1 setosa 50
2 versicolor 50
3 virginica 50
Thank you.
Thank you all for very helpful answer. I tried the solutions and it seems snoram's answer solved my initial problem quite well. However, after I combined everything together, I couldn't get the last bit of the plot working properly. The idea is that I want to plot the percentage distribution on the "var_nm" and group them by "by_var_nm". The problem I got is that the bar graph and also the percentage for the data label are not lined up properly.
test_func <- function(data, var_nm, by_var_nm) {
var_nm <- deparse(substitute(var_nm))
by_var_nm <- deparse(substitute(by_var_nm))
tbl_test_sum <- as.data.frame(table(data[[by_var_nm]], data[[var_nm]]))
names(tbl_test_sum) <- c(by_var_nm, var_nm, "count")
# tbl_test_sum
tbl_test_total <- as.data.frame(table(data[[by_var_nm]]))
names(tbl_test_total) <- c(by_var_nm, "total")
# tbl_test_total
tbl_test_pctg <- full_join(tbl_test_sum, tbl_test_total, by = by_var_nm) %>%
mutate(
percentage = count / total
)
# tbl_test_pctg
ggplot(data=tbl_test_pctg, aes(x = tbl_test_pctg[[var_nm]], y = percentage, fill = tbl_test_pctg[[var_nm]])) +
geom_bar(stat="identity") +
geom_text(aes(label = scales::percent(percentage))) +
facet_grid(tbl_test_pctg[[by_var_nm]]~.) +
coord_flip()
}
test_func(mtcars, cyl, am)
Upvotes: 3
Views: 261
Reputation: 215077
You can use rlang
's Quotation syntax, which is designed for this use case; Also read the examples here:
library(rlang); library(dplyr)
test_func <- function(data, by_var_nm) {
by_var_nm <- enquo(by_var_nm)
tbl_test_sum <- data %>%
group_by(!!by_var_nm) %>%
summarise(
count = n()
)
tbl_test_sum
}
test_func(iris, Species)
# A tibble: 3 x 2
# Species count
# <fct> <int>
#1 setosa 50
#2 versicolor 50
#3 virginica 50
Upvotes: 1
Reputation: 33548
Suggesting similar solution as Alexandre but breaking dplyr
dependency at the same time. If you are planning on keeping this function I think unnecessary dependencies is not a good idea.
test_func <- function(data, by_var_nm) {
by_var_nm <- deparse(substitute(by_var_nm))
tbl_test_sum <- as.data.frame(table(data[[by_var_nm]]))
names(tbl_test_sum) <- c(by_var_nm, "count")
tbl_test_sum
}
Speed:
> microbenchmark::microbenchmark(test_func_Alex(iris, Species), test_func_snoram(iris, Species), unit = "relative")
Unit: relative
expr min lq mean median uq max neval cld
test_func_Alex(iris, Species) 6.910679 6.834064 5.827796 5.622154 5.480321 4.009469 100 b
test_func_snoram(iris, Species) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100 a
Upvotes: 1
Reputation: 667
I don't know why this is happening but you can use this trick to get back the name :
test_func <- function(data, by_var_nm) {
by_var_nm <- deparse(substitute(by_var_nm))
tbl_test_sum <- data %>%
group_by(data[[by_var_nm]]) %>%
summarise(
count = n()
)
names(tbl_test_sum)[grep("by_var_nm",names(tbl_test_sum))] <- by_var_nm
tbl_test_sum
}
test_func(iris, Species)
You can also use the index names(tbl_test_sum)[1]
assuming the group_by()
is creating the first column on this variable.
Hope this will help you
Upvotes: 0