Reputation: 3159
Could you explain to me, what the purpose of the 'DataFrame.columns.name' attribute is?
I unintentionally got it after creating a pivot table and resetting the index.
import pandas as pd
df = pd.DataFrame(['a', 'b'])
print(df.head())
# OUTPUT:
# 0
# 0 a
1 b
df.columns.name = 'temp'
print(df.head())
# OUTPUT:
# temp 0
# 0 a
# 1 b
Upvotes: 13
Views: 15284
Reputation: 17122
giving name to column levels could be useful in many ways when you manipulate your data.
a simple example would be when you use `stack()'
df = pd.DataFrame([['a', 'b'], ['d', 'e']], columns=['hello', 'world'])
print(df.stack())
0 hello a
world b
1 hello d
world e
df.columns.name = 'temp'
print(df.stack())
temp
0 hello a
world b
1 hello d
world e
dtype: object
as you can see the stacked df has kept the level name of the columns. in a multi-index / multi-level dataframe this could be very useful
slightly more complex example (from the doc):
tuples = [('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')]
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
pd.MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
s = pd.Series(np.random.randn(8), index=index)
print(s)
first second
bar one -0.9166
two 1.0698
baz one -0.8749
two 1.3895
foo one 0.5333
two 0.1014
qux one -1.2350
two -0.6479
dtype: float64
s.unstack()
second one two
first
bar -0.9166 1.0698
baz -0.8749 1.3895
foo 0.5333 0.1014
qux -1.2350 -0.6479
Upvotes: 3