Reputation: 1991
I am looking to get percentages of done trades to total trades per month. Previously my data was only for a single month and solved by:
total_trades = df['state'].count()
RFQ_Hit_Rate = done_trades / total_trades
RFQ_Hit_Rate = round(RFQ_Hit_Rate, 6)
There are now 12 months of data so I need to update the code. New data
dfHit_Rate_All = df[['Year_Month','state']].copy()
dfHit_Rate_All = dfHit_Rate_All.groupby(['Year_Month','state']).size().reset_index(name='count')
Year_Month state Counts
2017-11 Customer Reject 1
2017-11 Customer Timeout 2
2017-11 Dealer Reject 3
2017-12 Dealer Timeout 4
2017-12 Done 5
2017-12 Done 6
2018-01 Tied Covered 7
2018-01 Tied Done 8
2018-01 Tied Traded Away 9
2018-02 Traded Away 10
2018-02 Done 11
2018-02 Customer Reject 12
For each month find the total trades, the total Done Trades and calculate the ratio. Note any string with 'Done' in it is a done trade i.e. [df['state'].str.contains('Done'):
Year_Month Total_state_count Total_state_count_Done Done_To_Total_Ratio
2017-11 6 0 0%
2017-12 15 11 73%
2018-01 24 8 33%
2018-02 33 11 33%
Upvotes: 1
Views: 168
Reputation: 862581
I think need aggregate by agg
with tuples - new column name with aggregate functions:
agg = [('Total_state_count_Done',lambda x: x.str.contains('Done').sum()),
('Total_state_count', 'size')]
df = df.groupby('Year_Month')['state'].agg(agg)
And for new column divide and multiple by 100
:
df['Done_To_Total_Ratio'] = df['Total_state_count_Done'].div(df['Total_state_count']).mul(100)
print (df)
Total_state_count_Done Total_state_count Done_To_Total_Ratio
Year_Month
2017-11 0 3 0.000000
2017-12 2 3 66.666667
2018-01 1 3 33.333333
2018-02 1 3 33.333333
If need convert last column to integers and add percentages:
df['Done_To_Total_Ratio'] = (df['Total_state_count_Done']
.div(df['Total_state_count'])
.mul(100)
.astype(int)
.astype(str)
.add('%'))
print (df)
Total_state_count_Done Total_state_count Done_To_Total_Ratio
Year_Month
2017-11 0 3 0%
2017-12 2 3 66%
2018-01 1 3 33%
2018-02 1 3 33%
Upvotes: 1