chrise
chrise

Reputation: 4253

pandas get a dataframe with 'customized describe'

I have a dataframe that looks like

dftest=pd.DataFrame(np.random.randint(0,10,size=(10, 4)), columns= 
['w','v1','v2','v3'])
df['x']=np.random.choice(a=[False, True], size=(1, 10), p=[0.5, 0.5])[0]

I would like to get a dataframe equal to

df.groupby('x').describe()

except that I would like to have the weighted mean

df.groupby(['x']).apply(lambda x: np.average(x['v1'], weights=x['w'], axis=0))

and as an additional column 'std'/('count'-1)

When I try

df.groupby(['x']).apply(lambda x: np.average(x[['v1','v2','v3']], weights=x['w'], axis=0))

I get a dataframe with 1 column containing a list of the 3 values instead of 3 columns.

How can get this all neatly into a regular dataframe?

Upvotes: 0

Views: 277

Answers (1)

jezrael
jezrael

Reputation: 863166

Use pd.Series for DataFrame, if need add to describe first add new level of MultiIndex and then join:

df1 = df.groupby('x').describe()

w = df.groupby(['x']).apply(lambda x: pd.Series(np.average(x[['v1','v2','v3']], 
                                          weights=x['w'], axis=0), index=['v1','v2','v3']))
w.columns = [w.columns, ['w_mean'] * len(w.columns)]
print (w)
             v1        v2        v3
         w_mean    w_mean    w_mean
x                                  
False  4.047619  2.142857  4.714286
True   4.750000  3.937500  3.250000

df1 = df1.join(w).sort_index(axis=1)
print (df1)
         v1                                                             v2  \
        25%  50%   75% count  max      mean  min       std    w_mean   25%   
x                                                                            
False  2.25  3.5  6.25   6.0  9.0  4.333333  1.0  3.076795  4.047619  2.00   
True   1.75  4.5  7.50   4.0  9.0  4.750000  1.0  3.862210  4.750000  2.75   

          v3               w                                  \
         std    w_mean   25%  50%   75% count  max mean  min   
x        ...                                                                
False    ...     3.271085  4.714286  6.50  8.0  8.75   6.0  9.0  7.0  2.0   
True     ...     3.109126  3.250000  0.75  3.5  6.75   4.0  9.0  4.0  0.0   


            std  
x                
False  2.683282  
True   4.242641  

[2 rows x 35 columns]

Upvotes: 1

Related Questions