Reputation: 23
Is there a way of doing this in Python with NumPy arrays? preferably without using too many for loops.
I know numpy.where()
exists but I am not sure how to implement it if it can be used as in the following Fortran snippet
z_ocean=0
do i=1,nstep_yr
where(mldclim(:,:,i).gt.z_ocean) z_ocean = mldclim(:,:,i)
end do
Upvotes: 1
Views: 477
Reputation: 1263
Consider what the where
statement in your fortran code implies:
"assign to each element of z_ocean
, where the corresponding element value from mldclim[i, :, :]
is greater than the element value in z_ocean
, the element value from mldclim[i, :, :]
"
Edit: I modified the definition above to better reflect the fact that this is an elementwise operation, as stated in a comment by @francescalus
Looking at the documentation for numpy.where()
, it can be used as where(*condition*, *value if true*, *value if false*)
.
So in your case, something like this:
z_ocean = np.where(mldclim[i, :, :] > z_ocean, mldclim[i, :, :], z_ocean)
Here are examples in python (note that I've swapped around index order in python for direct comparison)
import numpy as np
nstep_yr = 2
# initialize randomly
# mldclim = np.random.rand(nstep_yr, 3, 3) - 0.5
# use these values for fortran comparison
mldclim = np.reshape([ 0.09911714, 0.18911965, 0.30409478, -0.08548523, \
-0.03652424, -0.18361127, 0.49970408, -0.04139379, \
-0.03451338, -0.24631131, 0.35726568, -0.30630386, \
0.26184705, 0.01286879, -0.21745516, 0.46137956, \
0.40410629, 0.29996342], (nstep_yr, 3, 3) )
# initialize and make a copies for testing...
z_ocean = np.zeros((3,3))
z_ocean_1 = np.copy(z_ocean)
z_ocean_2 = np.copy(z_ocean)
for i in range(nstep_yr):
# "direct translation" of your fortran code
z_ocean = np.where(mldclim[i, :, :] > z_ocean, mldclim[i, :, :], z_ocean)
# loop based version of @francescalus' comment
z_ocean_1 = np.maximum(z_ocean_1, mldclim[i, :, :])
# loop free version of @francescalus' comment
z_ocean_2 = np.maximum(z_ocean_2, np.max(mldclim, axis=0))
# check that all solutions are the same
assert np.allclose(z_ocean, z_ocean_1) and np.allclose(z_ocean, z_ocean_2)
print(z_ocean.ravel())
and fortran (replicating your original code sample)
program test
implicit none
integer, parameter :: nstep_yr = 2
real :: mldclim(3,3,nstep_yr)
real :: z_ocean(3,3)
integer :: i
mldclim = reshape([ 0.09911714, 0.18911965, 0.30409478, -0.08548523, &
-0.03652424, -0.18361127, 0.49970408, -0.04139379, &
-0.03451338, -0.24631131, 0.35726568, -0.30630386, &
0.26184705, 0.01286879, -0.21745516, 0.46137956, &
0.40410629, 0.29996342], [3, 3, 2] )
z_ocean=0
do i=1,nstep_yr
where(mldclim(:,:,i).gt.z_ocean) z_ocean = mldclim(:,:,i)
end do
print *, z_ocean
end program test
Which gives the following output:
[0.09911714 0.35726568 0.30409478 0.26184705 0.01286879 0.
0.49970408 0.40410629 0.29996342]
9.91171375E-02 0.357265681 0.304094791 0.261847049 1.28687900E-02 0.00000000 0.499704093 0.404106289 0.299963415
Upvotes: 1