Reputation: 337
I have a large number data.
I need to average each fifteen minutes 'w'.
Now I use for loop to execute,but it is so slow.
pandas have any suite can help?
I really need your help.Many thanks.
Upvotes: 1
Views: 67
Reputation: 862481
There are 2 possible different solutions - resampling by 15Min
and aggregate columns by mean and first value:
df = df.resample('15T', on='reporttime').agg({'w':'mean', 'buildingid':'first'})
Or groupbing by column buildingid
with Grouper
for resampling:
df = df.groupby(['buildingid', pd.Grouper(key='reporttime',freq='15T')])['w'].mean()
Sample:
rng = pd.date_range('2017-04-03 18:09:04', periods=10, freq='7T')
df = pd.DataFrame({'reporttime': rng, 'w': range(10), 'buildingid':[39] * 5 + [40] * 5})
print (df)
reporttime w buildingid
0 2017-04-03 18:09:04 0 39
1 2017-04-03 18:16:04 1 39
2 2017-04-03 18:23:04 2 39
3 2017-04-03 18:30:04 3 39
4 2017-04-03 18:37:04 4 39
5 2017-04-03 18:44:04 5 40
6 2017-04-03 18:51:04 6 40
7 2017-04-03 18:58:04 7 40
8 2017-04-03 19:05:04 8 40
9 2017-04-03 19:12:04 9 40
df1 = df.resample('15T', on='reporttime').agg({'w':'mean', 'buildingid':'first'}).reset_index()
print (df1)
reporttime w buildingid
0 2017-04-03 18:00:00 0.0 39
1 2017-04-03 18:15:00 1.5 39
2 2017-04-03 18:30:00 4.0 39
3 2017-04-03 18:45:00 6.5 40
4 2017-04-03 19:00:00 8.5 40
df2 = df.groupby(['buildingid', pd.Grouper(key='reporttime',freq='15T')])['w'].mean().reset_index()
print (df2)
buildingid reporttime w
0 39 2017-04-03 18:00:00 0.0
1 39 2017-04-03 18:15:00 1.5
2 39 2017-04-03 18:30:00 3.5
3 40 2017-04-03 18:30:00 5.0
4 40 2017-04-03 18:45:00 6.5
5 40 2017-04-03 19:00:00 8.5
Upvotes: 1