Reputation: 1256
I have a defaultdict:
dd = defaultdict(list,
{'Tech': ['AAPL','GOOGL'],
'Disc': ['AMZN', 'NKE'] }
and a dataframe that looks like this:
AAPL AMZN GOOGL NKE
1/1/10 100 200 500 200
1/2/10 100 200 500 200
1/310 100 200 500 200
and the output I'd like is to SUM the dataframe based on the values of the dictionary, with the keys as the columns:
TECH DISC
1/1/10 600 400
1/2/10 600 400
1/3/10 600 400
The pandas groupby documentation says it does this if you pass a dictionary but all I end up with is an empty df using this code:
df.groupby(by=dd).sum() ##returns empty df
Upvotes: 5
Views: 1048
Reputation: 28243
you can create a new dataframe using the defaultdict and dictionary comprehension in 1 line
pd.DataFrame({x: df[dd[x]].sum(axis=1) for x in dd})
# output:
Disc Tech
1/1/10 400 600
1/2/10 400 600
1/310 400 600
Upvotes: 2
Reputation: 323226
Create the dict
in the right way , you can using by
with axis=1
# map each company to industry
dd_rev = {w: k for k, v in dd.items() for w in v}
# {'AAPL': 'Tech', 'GOOGL': 'Tech', 'AMZN': 'Disc', 'NKE': 'Disc'}
# group along columns
df.groupby(by=dd_rev,axis=1).sum()
Out[160]:
Disc Tech
1/1/10 400 600
1/2/10 400 600
1/310 400 600
Upvotes: 7