Reputation: 756
I am working with a dataset of about 400.000 x 250. I have a problem with the model yielding a very good R^2 score when testing it on the training set, but extremely poorly when used on the test set. Initially, this sounds like overfitting. But the data is split into training/test set at random and the data set i pretty big, so I feel like there has to be something else. Any suggestions?
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df.drop(['SalePrice'],
axis=1), df.SalePrice, test_size = 0.3)
from sklearn import linear_model
linReg = linear_model.LinearRegression() # Create linear regression object
linReg.fit(X_train, y_train) # Train the model using the training sets
# Predict from training set
y_train_linreg = linReg.predict(X_train)
# Predict from test set
y_pred_linreg = linReg.predict(X_test)
from sklearn import metrics
metrics.r2_score(y_train, y_train_linreg)
metrics.r2_score(y_test, y_pred_linreg)
R^2 score when testing on training set: 0,64
R^2 score when testing on testing set: -10^23 (approximatly)
Upvotes: 0
Views: 3034
Reputation: 1879
While I agree with Mihai that your problem definitely looks like overfitting, I don't necessarily agree on his answer that neural network would solve your problem; at least, not out of the box. By themselves, neural networks overfit more, not less, than linear models. You need somehow to take care of your data, hardly any model can do that for you. A few options that you might consider (apologies, I cannot be more precise without looking at the dataset):
Upvotes: 3