Reputation: 4341
I have the following code which grabs some data from the Marketo system
from marketorestpython.client import MarketoClient
munchkin_id = "xxx-xxx-xxx"
client_id = "00000000-0000-0000-0000-00000000000"
client_secret= "secret"
mc = MarketoClient(munchkin_id, client_id, client_secret)
mc.execute(method='get_multiple_leads_by_filter_type', filterType='email', filterValues=['[email protected]'],
fields=['BG__c','email','company','createdAt'], batchSize=None)
This returns me the following data
[{'BG__c': 'ABC',
'company': 'MCS',
'createdAt': '2016-10-25T14:04:15Z',
'id': 4,
'email': '[email protected]'},
{'BG__c': 'CDE',
'company': 'MSC',
'createdAt': '2018-03-28T16:41:06Z',
'id': 10850879,
'email': '[email protected]'}]
What i want to do is, to save this returned to a Parquet file. But when i try this with the following code, i receive an error message.
from marketorestpython.client import MarketoClient
munchkin_id = "xxx-xxx-xxx"
client_id = "00000000-0000-0000-0000-00000000000"
client_secret= "secret"
mc = MarketoClient(munchkin_id, client_id, client_secret)
data = mc.execute(method='get_multiple_leads_by_filter_type', filterType='email', filterValues=['[email protected]'],
fields=['BG__c','email','company','createdAt'], batchSize=None)
sqlContext.read.json(data)
data.write.parquet("adl://subscription.azuredatalakestore.net/folder1/Marketo/marketo_data")
java.lang.ClassCastException: java.util.HashMap cannot be cast to java.lang.String
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<command-1431708582476650> in <module>()
7 fields=['BG__c','email','company','createdAt'], batchSize=None)
8
----> 9 sqlContext.read.json(data)
10 data.write.parquet("adl://subscription.azuredatalakestore.net/folder1/Marketo/marketo_data")
/databricks/spark/python/pyspark/sql/readwriter.py in json(self, path, schema, primitivesAsString, prefersDecimal, allowComments, allowUnquotedFieldNames, allowSingleQuotes, allowNumericLeadingZero, allowBackslashEscapingAnyCharacter, mode, columnNameOfCorruptRecord, dateFormat, timestampFormat, multiLine, allowUnquotedControlChars, charset)
261 path = [path]
262 if type(path) == list:
--> 263 return self._df(self._jreader.json(self._spark._sc._jvm.PythonUtils.toSeq(path)))
264 elif isinstance(path, RDD):
265 def func(iterator):
/databricks/spark/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py in __call__(self, *args)
1158 answer = self.gateway_client.send_command(command)
1159 return_value = get_return_value(
-> 1160 answer, self.gateway_client, self.target_id, self.name)
1161
What am i doing wrong?
Upvotes: 4
Views: 12604
Reputation: 1030
You have the following data
data = [{'BG__c': 'ABC',
'company': 'MCS',
'createdAt': '2016-10-25T14:04:15Z',
'id': 4,
'email': '[email protected]'},
{'BG__c': 'CDE',
'company': 'MSC',
'createdAt': '2018-03-28T16:41:06Z',
'id': 10850879,
'email': '[email protected]'}]
In order to save it to a parquet file, I would suggest creating a DataFrame to then save it as a parquet.
from pyspark.sql.types import *
df = spark.createDataFrame(data,
schema = StructType([
StructField("BC_g", StringType(), True),
StructField("company", StringType(), True),
StructField("createdAt", StringType(), True),
StructField("email", StringType(), True),
StructField("id", IntegerType(), True)]))
This would give the following types :
df.dtypes
[('BC_g', 'string'),
('company', 'string'),
('createdAt', 'string'),
('email', 'string'),
('id', 'int')]
You can then save the dataframe as a parquet file
df.show()
+-----+-------+--------------------+----------------+--------+
|BG__c|company| createdAt| email| id|
+-----+-------+--------------------+----------------+--------+
| ABC| MCS|2016-10-25T14:04:15Z|[email protected]| 4|
| CDE| MSC|2018-03-28T16:41:06Z|[email protected]|10850879|
+-----+-------+--------------------+----------------+--------+
df.write.format('parquet').save(parquet_path_in_hdfs)
Where parquet_path_in_hdfs is the path and name of the desired parquet file
Upvotes: 2
Reputation: 1812
As per below statement in your code you are directly writing data. You have to first create dataframe. You can convert json to df using val df = sqlContext.read.json("path/to/json/file").Then do df.write
data.write.parquet("adl://subscription.azuredatalakestore.net/folder1/Marketo/marketo_data")
Upvotes: 0