Reputation: 10026
I want to capture some categorical values with an occurence above a certain threshold:
df:
ticket_id, category, amount --> some more columns
1020 cat1 1000
1022 cat1 55
1023 cat1 12291
1120 cat2 140
1121 cat3 1250
^
|
|
Way more rows with mostly (1020) cat5, (98) cat1, cat3, cat4 and no cat2.
>>>> df.groupby('category')['amount'].count()
category
cat1 100
cat2 1
cat3 6
cat4 2
cat5 1020
I want to get the categories with count > 20 in a list. Currently I'm doing:
>>>> t = test.groupby('disposition')['fine_amount'].agg(['count','mean'])
>>>> t[t['count']>10].index.values
array(['cat1','cat5'])
Now this works, but I believe it can be done shorter: In order to refer the count column
I need at least 2 aggregate functions, further more I need 1 variables & 2 lines.
I was hoping something like:
>>>> groupby('category')['amount'].apply(lambda x: x.count() > 10)
but that yields:
cat1 100 True
etc
>>>> groupby('category')['amount'].apply(lambda x: x[x.count() > 10])
Fails completely
>>>> groupby('category')['amount'].count().nlargest(2)
gives the correct list but in this case because I know there are 2 elements.
What is the most elegant / performing solution?
Upvotes: 10
Views: 27842
Reputation: 153460
You can use lambda express in boolean indexing:
Borrowing from @user2483203 setup:
np.random.seed(123)
categories = ['cat1', 'cat2', 'cat3', 'cat4', 'cat5']
dct = {'categories': [np.random.choice(categories) for i in range(100)], 'amount': [np.random.randint(1, 10) for _ in range(100)]}
df = pd.DataFrame(dct)
Use value_counts
and boolean indexing:
df['categories'].value_counts()[lambda x: x>20].index.tolist()
Output:
['cat4', 'cat2']
Upvotes: 6
Reputation: 51165
You can make this much cleaner by just using the result of your initial groupby and indexing that:
Setup
categories = ['cat1', 'cat2', 'cat3', 'cat4', 'cat5']
dct = {'categories': [random.choice(categories) for i in range(75)], 'amount': [random.randint(1, 10) for _ in range(75)]}
df = pd.DataFrame(dct)
groupby
with count
s = df.groupby('categories').amount.count()
# categories
# cat1 12
# cat2 10
# cat3 21
# cat4 17
# cat5 15
# Name: amount, dtype: int64
Nice and clean indexing:
s[s > 20].index.tolist()
['cat3']
Upvotes: 19