Reputation: 19375
Consider the following dataframe
import pandas as pd
import numpy as np
import pyarrow.parquet as pq
import pyarrow as pa
idx = pd.date_range('2017-01-01 12:00:00.000', '2017-03-01 12:00:00.000', freq = 'T')
dataframe = pd.DataFrame({'numeric_col' : np.random.rand(len(idx)),
'string_col' : pd.util.testing.rands_array(8,len(idx))},
index = idx)
dataframe
Out[30]:
numeric_col string_col
2017-01-01 12:00:00 0.4069 wWw62tq6
2017-01-01 12:01:00 0.2050 SleB4f6K
2017-01-01 12:02:00 0.5180 cXBvEXdh
2017-01-01 12:03:00 0.3069 r9kYsJQC
2017-01-01 12:04:00 0.3571 F2JjUGgO
2017-01-01 12:05:00 0.3170 8FPC4Pgz
2017-01-01 12:06:00 0.9454 ybeNnZGV
2017-01-01 12:07:00 0.3353 zSLtYPWF
2017-01-01 12:08:00 0.8510 tDZJrdMM
2017-01-01 12:09:00 0.4948 S1Rm2Sqb
2017-01-01 12:10:00 0.0279 TKtmys86
2017-01-01 12:11:00 0.5709 ww0Pe1cf
2017-01-01 12:12:00 0.8274 b07wKPsR
2017-01-01 12:13:00 0.3848 9vKTq3M3
2017-01-01 12:14:00 0.6579 crYxFvlI
2017-01-01 12:15:00 0.6568 yGUnCW6n
I need to write this dataframe into many parquet files. Of course, the following works:
table = pa.Table.from_pandas(dataframe)
pq.write_table(table, '\\\\mypath\\dataframe.parquet', flavor ='spark')
My issue is that the resulting (single) parquet
file gets too big.
How can I efficiently (memory-wise, speed-wise) split the writing into daily
parquet files (and keep the spark
flavor)? These daily files will be easier to read in parallel with spark
later on.
Thanks!
Upvotes: 9
Views: 8829
Reputation: 13437
The solution presented by David doesn't solve the problem as it generates a parquet file for every index. But this slight modified version does the trick
import pandas as pd
import numpy as np
import pyarrow.parquet as pq
import pyarrow as pa
idx = pd.date_range('2017-01-01 12:00:00.000', '2017-03-01 12:00:00.000',
freq='T')
df = pd.DataFrame({'numeric_col': np.random.rand(len(idx)),
'string_col': pd.util.testing.rands_array(8,len(idx))},
index = idx)
df["dt"] = df.index
df["dt"] = df["dt"].dt.date
table = pa.Table.from_pandas(df)
pq.write_to_dataset(table, root_path='dataset_name', partition_cols=['dt'],
flavor='spark')
Upvotes: 2
Reputation: 11573
Making a string columndt
based off of the index will then allow you to write out the data partitioned by date by running
pq.write_to_dataset(table, root_path='dataset_name', partition_cols=['dt'], flavor ='spark')
Answer is based off of this source (note, the source incorrectly lists the partition argument as partition_columns
)
Upvotes: 7