Reputation: 331
I have data that looks like this.
Month_Yr revenue year mo
2016-01 1200 2016 01
2016-02 7826 2016 02
2016-03 11892 2016 03
2016-05 11376 2016 05
2016-06 9055 2016 06
2016-07 5000 2016 07
I'd like to create a column that contains the cumulative sum of revenue for each year, but have it listed by month. So it would look like this:
Month_Yr revenue year mo cumsum
2016-01 1200 2016 01 1200
2016-02 7826 2016 02 9026
2016-03 11892 2016 03 20918
2016-05 11376 2016 05 32294
2016-06 9055 2016 06 41349
2016-07 5000 2016 07 46349
This data extends through 2018, and some months (such as April 2016) do not have any values so they're excluded. Thanks!
Upvotes: 0
Views: 5473
Reputation: 79348
library(tidyverse)
df%>%
separate(Month_Yr,c("year","month"),remove = F)%>%
group_by(year)%>%
mutate(cumsum=cumsum(Revenue))
in base R you can do
transform(df,year=y<-sub("-.*","",Month_Yr),
month=sub(".*-","",Month_Yr),revenue=ave(Revenue,y,FUN=cumsum))
Upvotes: 4
Reputation: 444
You can try:
library(dplyr)
df <- data.frame("Month_Yr" = c("2016-01","2016-02","2016-03","2016-05","2016-06","2016-07","2017-01","2017-02","2017-03","2017-05","2017-06","2017-07","2018-01","2018-02","2018-03","2018-05","2018-06","2018-07"), "Revenue" = c(1200,7826,11892,11376,9055,5000))
df$year <- substr(df$Month_Yr,0,4)
df$mo <- substr(df$Month_Yr,6,7)
df <- df %>%
arrange(year,mo) %>%
group_by(year) %>%
mutate(cumsum = cumsum(Revenue))
Updated the answer.
Upvotes: 1