Reputation: 1031
-in ubuntu16.04.1 -in keras 2.1.6
here is my try
model =Sequential()
model.add(Dense(4096, input_shape=(3,), activation='relu'))
model.add(Dense(2048, activation='relu'))
model.add(Dense(1024, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
parallel_model = multi_gpu_model(model, gpus=4)
parallel_model.compile(loss='binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
parallel_model.fit(x_train,y_train,epochs = 1, batch_size =2000)
model.save('test_train_model_re_re.h5')
and save moment, this error is occur.
TypeError: can't pickle NotImplementedType objects
i didn't use call_back method.
why this error is occur and please give some solution
Upvotes: 0
Views: 1640
Reputation: 1515
I also had the same error and my work around the issue was putting using this code after your model fit.
parallel_model.fit(x_train,y_train,epochs = 1, batch_size =2000)
from keras.models import model_from_json
# serialize model to JSON
model_json = parallel_model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")
Upvotes: 2