Reputation: 795
I'm trying to write something similar in C++ to a set of typeclasses, and I'm struggling with how to arrange the template signatures, or if it's even possible to do what I want to do.
To break it down to its smallest example, say I have this:
template<typename S, typename T>
struct Homomorphism {
//Defined in specialization: static const T morph(const S&);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
template<typename S, typename T>
struct Monomorphism : Homomorphism<S, T> {
//Defined in specialization: static const T morph(const &S);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
I have specializations of these classes (and other morphisms) for data types in my program.
What I'd like to do now is to write a struct template that will take two homomorphisms or two monomorphisms and compose them to generate a new homomorphism or monomorphism struct respectively, i.e. something like:
template<typename S, typename T, typename U,
typename HST = Homomorphism<S, T>,
typename HTU = Homomorphism<T, U>,
typename HSU = Homomorphism<S, U> >
struct CompositionMorphism : HSU {
static const U morph(const S &s) {
return HTU::morph(HST::morph(s));
}
static constexpr bool is_instance = true;
using src = S;
using dest = U;
}
This actually worked for composing specialized instances of Homomorphism via:
CompositionMorphism<Class1, Class2, Class3>::morph(class1Instance);
when I had:
struct Homomorphism<Class1, Class2> {
static const Class2 morph(const Class1 &c) {
...
}
};
and analogous for Homomorphism<Class2, Class3>
.
Now, however, I'd like to write:
template<typename S, typename T, typename U,
typename MST = Monomorphism<S, T>,
typename MTU = Monomorphism<T, U>,
typename MSU = Monomorphism<S, U> >
struct CompositionMorphism : MSU {
static const U morph(const S &s) {
return MTU::morph(MST::morph(s));
}
static constexpr bool is_instance = true;
using src = S;
using dest = U;
};
but the compiler is, unsurprisingly complaining about a duplicate definition of CompositionMorphism
.
Is there a way to write CompositionMorphism
and its specializations with Homomorphism
and Monomorphism
so that I will be able to do things like call:
template<> struct Homomorphism<Class1, Class2> { ... };
template<> struct Homomorphism<Class2, Class3> { ... };
CompositionMorphism<Class1, Class2, Class3>::morph(c1Instance);
or:
template<> struct Monomorphism<Class1, Class2> { ... };
template<> struct Monomorphism<Class2, Class3> { ... };
CompositionMorphism<Class1, Class2, Class3>::morph(c1Instance);
or:
template<> struct Monomorphism<Class1, Class2> { ... };
template<> struct Homomorphism<Class2, Class3> { ... };
CompositionMorphism<Class1, Class2, Class3>::morph(c1Instance);
and have the compiler pick the closest CompositionMorphism
specialization based on my morphism hierarchy?
Upvotes: 0
Views: 1852
Reputation: 561
OK, Sometimes i need a little more thinking, but this is probably what you are looking for:
#include <type_traits>
#include <cstdint>
#include <tuple>
template<typename S, typename T>
struct Homomorphism;
template<typename S, typename T>
struct Monomorphism;
class Class1{};
class Class2{};
class Class3{};
template<> struct Homomorphism<Class1, Class2>
{
static const Class2 morph(const Class1&);
static constexpr bool is_instance = true;#
};
template<> struct Homomorphism<Class2, Class3>
{
static const Class3 morph(const Class2&);
static constexpr bool is_instance = true;
};
template<typename S, typename T>
struct Homomorphism {
//Defined in specialization: static const T morph(const S&);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
template<typename S, typename T>
struct Monomorphism : Homomorphism<S, T> {
//Defined in specialization: static const T morph(const &S);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
namespace details {
template<typename T, typename U, std::enable_if_t<Homomorphism<T,U>::is_instance>* = nullptr>
U morph (const T& t)
{return Homomorphism<T,U>::morph(t);}
template<typename T, typename U, std::enable_if_t<Monomorphism<T,U>::is_instance>* = nullptr>
U morph (const T& t)
{return Monomorphism<T,U>::morph(t);}
}
template <typename S, typename T, typename U>
class CompositionMorphism
{
public:
static U morph (const S& s) {return details::morph<T,U>(details::morph<S,T>(s));}
static constexpr bool is_instance = true;
};
int main(int, char**)
{
Class1 c1Instance;
CompositionMorphism<Class1, Class2, Class3>::morph(c1Instance);
std::ignore = d;
}
And you might possibly want to create composed Homo/Mono morphism manually as follows:
template <> class Monomorphism<Class1,Class3> : public CompositionMorphism<Class1, Class2, Class3> {};
Then they can be reused by CompositionMorphism automatically.
Upvotes: 1
Reputation: 12928
You could try something like writing a template to select Homomorphism
or Monomorphism
based on SFINAE on the morph
function.
template <typename S, typename T, typename = void>
struct SelectMorphism {
using type = Homomorphism<S, T>;
};
template <typename S, typename T>
struct SelectMorphism<S, T, std::enable_if_t<std::is_same_v<decltype(Monomorphism<S, T>::morph(std::declval<S>())), const T>>> {
using type = Monomorphism<S, T>;
};
This will check if Monomorphism<S, T>::morph(S)
would return a T
, if so select a Monomorphism<S, T>
. If not SFINAE will fail and default to a Homomorphism<S, T>
.
Then we change CompositionMorphism
to use this template like so
template<typename S, typename T, typename U,
typename HST = typename SelectMorphism<S, T>::type,
typename HTU = typename SelectMorphism<T, U>::type,
typename HSU = typename SelectMorphism<S, U>::type >
struct CompositionMorphism : HSU {
static const U morph(const S &s) {
return HTU::morph(HST::morph(s));
}
static constexpr bool is_instance = true;
using src = S;
using dest = U;
};
You can see a live demo here of this full working example. It requires c++17
but can be written for c++11
as well (slightly more verbose).
#include <iostream>
template<typename S, typename T>
struct Homomorphism {
//Defined in specialization: static const T morph(const S&);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
template<typename S, typename T>
struct Monomorphism : Homomorphism<S, T> {
//Defined in specialization: static const T morph(const &S);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
template <typename S, typename T, typename = void>
struct SelectMorphism {
using type = Homomorphism<S, T>;
};
template <typename S, typename T>
struct SelectMorphism<S, T, std::enable_if_t<std::is_same_v<decltype(Monomorphism<S, T>::morph(std::declval<S>())), const T>>> {
using type = Monomorphism<S, T>;
};
struct Class1 {};
struct Class2 {};
struct Class3 {};
template<>
struct Monomorphism<Class1, Class2> : Homomorphism<Class1, Class2> {
static const Class2 morph(const Class1&) { std::cout << "Morphing in Mono<Class1, Class2>" << std::endl; return Class2{}; }
static constexpr bool is_instance = false;
using src = Class1;
using dest = Class2;
};
template<>
struct Homomorphism<Class2, Class3> {
static const Class3 morph(const Class2&) { std::cout << "Morphing in Homo<Class2, Class3>" << std::endl; return Class3{}; }
static constexpr bool is_instance = false;
using src = Class2;
using dest = Class3;
};
template<typename S, typename T, typename U,
typename HST = typename SelectMorphism<S, T>::type,
typename HTU = typename SelectMorphism<T, U>::type,
typename HSU = typename SelectMorphism<S, U>::type >
struct CompositionMorphism : HSU {
static const U morph(const S &s) {
return HTU::morph(HST::morph(s));
}
static constexpr bool is_instance = true;
using src = S;
using dest = U;
};
int main ()
{
CompositionMorphism<Class1, Class2, Class3>::morph(Class1{});
}
Upvotes: 1
Reputation: 66190
As observed by Super, if you pass only T
, U
and V
the compiler doesn't know if is the case to chose Homomorphism
or Monomorphism
.
So I suppose you should pass Homomorphism<T, U>
and Homomorphism<U, V>
(Homomorphism<T, V>
can be constructed) or Monomorphism<T, U>
and Monomorphism<U, V>
If you want impose two Homomorphism
or two Monomorphism
(I mean: if you want exclude a Monomorphism
toghether with a Homomorphism
) you can write something as follows
template <typename, typename>
struct CompositionMorphism;
template <template <typename, typename> class C,
typename S, typename T, typename U>
struct CompositionMorphism<C<S, T>, C<T, U>>
{
using comp = C<S, U>;
static const U morph (const S & s)
{ return C<T, U>::morph(C<S, T>::morph(s)); }
};
and call it as follows
Homomorphism<int, long> h0;
Homomorphism<long, long long> h1;
Monomorphism<int, long> m0;
Monomorphism<long, long long> m1;
CompositionMorphism<decltype(h0), decltype(h1)> h2;
CompositionMorphism<decltype(m0), decltype(m1)> m2;
// compiler error
//CompositionMorphism<decltype(h0), decltype(m1)> hm;
The following is a full compiling example
#include <array>
#include <iostream>
template <typename S, typename T>
struct Homomorphism
{
//Defined in specialization: static const T morph(const S&);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
template <typename S, typename T>
struct Monomorphism : Homomorphism<S, T>
{
//Defined in specialization: static const T morph(const &S);
static constexpr bool is_instance = false;
using src = S;
using dest = T;
};
template <typename, typename>
struct CompositionMorphism;
template <template <typename, typename> class C,
typename S, typename T, typename U>
struct CompositionMorphism<C<S, T>, C<T, U>>
{
using comp = C<S, U>;
static const U morph (const S & s)
{ return C<T, U>::morph(C<S, T>::morph(s)); }
};
int main ()
{
Homomorphism<int, long> h0;
Homomorphism<long, long long> h1;
Monomorphism<int, long> m0;
Monomorphism<long, long long> m1;
CompositionMorphism<decltype(h0), decltype(h1)> h2;
CompositionMorphism<decltype(m0), decltype(m1)> m2;
// compiler error
//CompositionMorphism<decltype(h0), decltype(m1)> hm;
static_assert( std::is_same<Homomorphism<int, long long>,
decltype(h2)::comp>{}, "!" );
static_assert( std::is_same<Monomorphism<int, long long>,
decltype(m2)::comp>{}, "!" );
}
Upvotes: 1