Reputation: 93
Back again with another Racket question. New to higher order functions in general, so give me some leeway.
Currently trying to find the alternating sum using the foldr/foldl functions and not recursion.
e.g. (altsum '(1 3 5 7)) should equal 1 - 3 + 5 - 7, which totals to -4.
I've thought about a few possible ways to tackle this problem:
However, I have no clue where to start with foldl/foldr when every operation is not the same for every item in the list, so I'm having trouble implementing any of my ideas. Additionally, whenever I try to add more than 2 variables in my foldl's anonymous class, I have no idea what variables afterward refer to what variables in the anonymous class either.
Any help or pointers would be greatly appreciated.
Upvotes: 1
Views: 1597
Reputation: 48765
Your idea is OK. You can use range
to make a list of number 0 to length-1 and use the oddness of each to determine +
or -
:
(define (alt-sum lst)
(foldl (lambda (index e acc)
(define op (if (even? index) + -))
(op acc e))
0
(range (length lst))
lst))
As an alternative one can use SRFI-1 List Library that has fold
that allows different length lists as well as infinite lists and together with circular-list
you can have it alterate between +
and -
for the duration of lst
.
(require srfi/1) ; For R6RS you import (srfi :1)
(define (alt-sum lst)
(fold (lambda (op n result)
(op result n))
0
(circular-list + -)
lst))
(alt-sum '(1 3 5 7))
; ==> -4
Upvotes: 1
Reputation: 236114
We can leverage two higher-order procedures here: foldr
for processing the list and build-list
for generating a list of alternating operations to perform. Notice that foldr
can accept more than one input list, in this case we take a list of numbers and a list of operations and iterate over them element-wise, accumulating the result:
(define (altsum lst)
(foldr (lambda (ele op acc) (op acc ele))
0
lst
(build-list (length lst)
(lambda (i) (if (even? i) + -)))))
It works as expected:
(altsum '(1 3 5 7))
=> -4
Upvotes: 1