Reputation: 24577
I currently have two "layers" of modules that represent identifier-data relationships in a database.
The first layer defines identifier types, such as IdUser.t
or IdPost.t
while the second layer defines data types such as User.t
or Post.t
. I need all the modules of the first layer to be compiled before the modules of the second layer, because a Post.t
must hold the IdUser.t
of its author and the User.t
holds the IdPost.t
of the last five posts he visited.
Right now, IdUser.t
provides functionality that should only ever be used by User.t
, such as the ability to transform an IdUser.t
into an IdUser.current
: for security reasons, this transform must only ever be performed by the function User.check_password
. Since IdUser
and User
are independent modules, I need to define those features as public functions and rely on conventions to avoid calling them anywhere outside of User
, which is rather dirty. A symmetrical situation happens in IdPost.mine
:
module IdUser : sig
type t
type current
val current_of_t : t -> current (* <--- Should not be public! *)
end = struct
type t = string
type current = string
let current_of_t x = x
end
module IdPost : sig
type t
type mine
val mine_of_t : t -> mine (* <--- Should not be public! *)
end = struct
type t = string
type mine = string
let mine_of_t x = x
end
module Post : sig
(* Should not "see" IdUser.current_of_t but needs IdPost.mine_of_t *)
val is_mine : IdUser.current -> IdPost.t -> IdPost.mine
end
module User : sig
(* Should not "see" IdPost.mine_of_t but needs IdUser.current_of_t *)
val check_password : IdUser.t -> password:string -> IdUser.current
end
Is there a way of defining an current_of_t : t -> current
function in IdUser
that can only be called from within module User
?
EDIT: this was a simplified example of one pair of modules, but there's an obvious solution for a single pair that cannot be generalized to multiple pairs and I need to solve this for multiple pairs — about 18 pairs, actually... So, I've extended it to be an example of two pairs.
Upvotes: 5
Views: 804
Reputation: 31
It's possible to achieve fine-grained control over signatures with a combination of recursive modules, first-class modules and GADTs, but the limitation would be that all modules should then be inside the same top-level module and unpackings of first-class modules inside the recursive modules should be done in each function separately (not on the module-level as it would cause runtime exception Undefined_recursive_module):
module rec M1 : sig
module type M2's_sig = sig
val a : int
val c : float
end
module type M3's_sig = sig
val b : string
val c : float
end
type _ accessor =
| I'm_M2 : M2.wit -> (module M2's_sig) accessor
| I'm_M3 : M3.wit -> (module M3's_sig) accessor
val access : 'a accessor -> 'a
type wit
val do_it : unit -> unit
end = struct
module type M2's_sig = sig
val a : int
val c : float
end
module type M3's_sig = sig
val b : string
val c : float
end
type _ accessor =
| I'm_M2 : M2.wit -> (module M2's_sig) accessor
| I'm_M3 : M3.wit -> (module M3's_sig) accessor
module M1 = struct
let a = 1
let b = "1"
let c = 1.
end
let access : type a. a accessor -> a =
function
| I'm_M2 _ -> (module M1)
| I'm_M3 _ -> (module M1)
type wit = W
let do_it () =
let (module M2) = M2.(access @@ I'm_M1 W) in
let (module M3) = M3.(access @@ I'm_M1 W) in
Printf.printf "M1: M2: %d %s M3: %d %s\n" M2.a M2.b M3.a M3.b
end
and M2 : sig
module type M1's_sig = sig
val a : int
val b : string
end
module type M3's_sig = sig
val b : string
val c : float
end
type _ accessor =
| I'm_M1 : M1.wit -> (module M1's_sig) accessor
| I'm_M3 : M3.wit -> (module M3's_sig) accessor
val access : 'a accessor -> 'a
type wit
val do_it : unit -> unit
end = struct
module type M1's_sig = sig
val a : int
val b : string
end
module type M3's_sig = sig
val b : string
val c : float
end
type _ accessor =
| I'm_M1 : M1.wit -> (module M1's_sig) accessor
| I'm_M3 : M3.wit -> (module M3's_sig) accessor
module M2 = struct
let a = 2
let b = "2"
let c = 2.
end
let access : type a. a accessor -> a =
function
| I'm_M1 _ -> (module M2)
| I'm_M3 _ -> (module M2)
type wit = W
let do_it () =
let (module M1) = M1.(access @@ I'm_M2 W) in
let (module M3) = M3.(access @@ I'm_M2 W) in
Printf.printf "M2: M1: %d %f M3: %d %f\n" M1.a M1.c M3.a M3.c
end
and M3 : sig
module type M1's_sig = sig
val a : int
val b : string
end
module type M2's_sig = sig
val a : int
val c : float
end
type _ accessor =
| I'm_M1 : M1.wit -> (module M1's_sig) accessor
| I'm_M2 : M2.wit -> (module M2's_sig) accessor
val access : 'a accessor -> 'a
type wit
val do_it : unit -> unit
end = struct
module type M1's_sig = sig
val a : int
val b : string
end
module type M2's_sig = sig
val a : int
val c : float
end
type _ accessor =
| I'm_M1 : M1.wit -> (module M1's_sig) accessor
| I'm_M2 : M2.wit -> (module M2's_sig) accessor
module M3 = struct
let a = 3
let b = "3"
let c = 3.
end
let access : type a. a accessor -> a =
function
| I'm_M1 _ -> (module M3)
| I'm_M2 _ -> (module M3)
type wit = W
let do_it () =
let (module M1) = M1.(access @@ I'm_M3 W) in
let (module M2) = M2.(access @@ I'm_M3 W) in
Printf.printf "M3: M1: %s %f M2: %s %f\n" M1.b M1.c M2.b M2.c
end
let () =
M1.do_it ();
M2.do_it ();
M3.do_it ()
Upvotes: 0
Reputation:
So IdUser
is in reality an existential type: For User
there exists a type
IdUser.current
such that the public IdUser.t
can be lifted to it. There are a couple of ways to encode this: either functorize User
as Gasche shows if statically managing the dependence is sufficient, or use first-class modules or objects if you need more dynamism.
I'll work out Gasche's example a bit more, using private type abbreviations for convenience and to show how to leverage translucency to avoid privatizing implementation types too much. First, and this might be a limitation, I want to declare an ADT of persistent IDs
:
(* File id.ml *)
module type ID = sig
type t
type current = private t
end
module type PERSISTENT_ID = sig
include ID
val persist : t -> current
end
With this I can define the type of Post
s using concrete types for the ID
s but with ADTs to enforce the business rules relating to persistence:
(* File post.ml *)
module Post
(UID : ID with type t = string)
(PID : PERSISTENT_ID with type t = int)
: sig
val is_mine : UID.current -> PID.t -> PID.current
end = struct
let is_mine uid pid =
if (uid : UID.current :> UID.t) = "me" && pid = 0
then PID.persist pid
else failwith "is_mine"
end
The same thing with User
s:
(* File user.ml *)
module User
(UID : PERSISTENT_ID with type t = string)
: sig
val check_password : UID.t -> password:string -> UID.current
end = struct
let check_password uid ~password =
if uid = "scott" && password = "tiger"
then UID.persist uid
else failwith "check_password"
end
Note that in both cases I make use of the concrete but private ID
types. Tying all together is a simple matter of actually defining the ID
ADTs with their persistence rules:
module IdUser = struct
type t = string
type current = string
let persist x = x
end
module IdPost = struct
type t = int
type current = int
let persist x = x
end
module MyUser = User (IdUser)
module MyPost = Post (IdUser) (IdPost)
At this point and to fully decouple the dependencies you will probably need signatures for USER
and POST
that can be exported from this module, but it's a simple matter of adding them in.
Upvotes: 3
Reputation: 31459
I suggest you parametrize Post
(and possibly User
for consistency) by a signature for the IdUser
module : you would use a signature with current_of_t
for User
, and one without for Post
.
This guarantee that Post
doesn't use IdUser
private features, but the public interface of IdUser
is still too permissive. But with this setup, you have reversed the dependencies, and IdUser
(the sensitive part) can control its use directly, give itself (with the private part) to IdUser
and restrict the public signature to the public parts.
module type PrivateIdUser = sig
val secret : unit
end
module type PublicIdUser = sig
end
module type UserSig = sig
(* ... *)
end
module MakeUser (IdUser : PrivateIdUser) : UserSig = struct
(* ... *)
end
module IdUser : sig
include PublicIdUser
module User : UserSig
end
= struct
module IdUser = struct
let secret = ()
end
module User = MakeUser(IdUser)
include IdUser
end
module Post = struct
(* ... *)
end
Edit : Pascal Cuoq's concurrent -- in the temporal sense -- solution is alos very nice. Actually it's simpler and has less boilerplate. My solution adds an abstraction that allows for slightly more modularity, as you can define User
independently of IdUser
.
I think which solution is best probably depends on the specific application. If you have a lot of different modules that use PrivateIdUser
private information, then using functors to write them separately instead of bundling everyone in the same module can be a good idea. If only User
needs to be in the "private zone" and it's not very big, then Pascal's solution is a better choice.
Finally, while being forced to explicit Private
and Public
interfaces can be seen as an additional burden, it is also a way to make the access properties of different modules more explicit that using the position inside the module hierarchy.
Upvotes: 2
Reputation: 80305
One way that seems to work at least on your simplified example is to group IdUser
and User
inside a same module:
module UserAndFriends : sig ... end = struct
module IdUser : sig
...
end = struct
...
end
module User = struct
...
end
end
module Post : sig
val create : (* <--- Should not "see" IdUser.current_of_t *)
author:IdUser.current -> title:string -> body:string -> IdPost.t
end
Hiding the dangerous function(s) in the signature of UserAndFriends
gives the result you desire. If you do not want to make a big file containing both IdUser
and User
, you can use option -pack
of ocamlc to create UserAndFriends
. Note that in this case, you must craft your Makefile carefully so that the .cmi files of IdUser
and User
are not visible when compiling Post
. I am not the Makefile specialist for Frama-C, but I think we use separate directories and position the compiler option -I
carefully.
Upvotes: 2