Reputation: 81
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 1 1 0 0 0 0 0 1 1 0 0 3 3 0 0 0 4 4 0 0 0 5 5 5 5 0 0 2 2 2 2 2 0 2 2 2 2 2 0 0 0 6 6 6 6 6 6 0 6 6 6 6]
[0 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 0 5 5 5 5 5 5 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 6 6 6 6 6 6 6 6 6 6 6]
[1 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 5 5 5 0 0 5 5 5 0 2 2 0 0 2 2 0 0 0 2 2 0 0 6 6 0 0 6 6 6 0 0 6 6]
[1 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 5 5 5 5 0 0 0 0 0 2 2 0 2 2 2 0 0 0 2 2 2 0 6 6 0 0 0 6 6 0 0 6 6]
[1 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 0 5 5 5 5 5 5 0 0 2 2 0 2 2 2 0 0 0 2 2 2 0 6 6 0 0 0 6 6 0 0 6 6]
[0 1 1 0 0 0 0 0 0 7 0 0 0 3 3 0 0 0 4 4 0 0 0 0 5 5 5 5 5 0 2 2 0 2 2 2 0 0 0 2 2 2 0 6 6 0 0 0 6 6 0 0 6 6]]
The following is a connected components list of lists (50 x 10), let's call it labels
, what i want is to create a dictionary where the numbers except 0
are a key of that dictionary, and the value correspondent to that key should be the coordinates for example [xmin,xmax,ymin,ymax]
,
Let's take 1 for example:
{'1': [0,10,1,9], '2': [......}
Being new to python, I found it hard to write a program to do that from scratch (not the dictionary creation and filling but finding the coordinates). Is there a way inside numpy that can do that for example np.unique(labels)
would help me identify unique labels values.
Upvotes: 1
Views: 202
Reputation: 3733
You need to use np.where
. It returns two arrays:
- the first contains row indeces y
- the second contains column indeces x
.
import nupmy as np
arr = np.array(labels)
stats = dict()
for i in np.unique(arr):
if i == 0:
continue
else:
wh = np.where(arr == i)
stats[i] = [wh[1].min(), wh[1].max(), wh[0].min(), wh[0].max()]
> {1: [0, 10, 1, 9],
2: [29, 41, 2, 9],
3: [13, 14, 4, 9],
4: [18, 19, 4, 9],
5: [21, 28, 4, 9],
6: [43, 53, 4, 9],
7: [9, 9, 9, 9]}
Upvotes: 3