Reputation: 349
I am trying to solve Ax = b for x.
A is a sparse matrix; x is unknown, and a b is a np.array.
print(type(matrix_a))
print(type(vector_c))
print("Matrix A Shape -- %s " %str(matrix_a.shape))
print("vector c shape -- %s " %len(vector_c))
#xx = np.array([1],dtype=np.float32)
vec_c = np.insert(vector_c,0,1)
print("Update Vector c shape -- %s "% len(vec_c))
new_matrix = matrix_a.todense()
new_matrix_T = new_matrix.transpose()
x = np.linalg.lstsq(new_matrix_T,vec_c)
yields the following output.
Matrix A Shape -- (48002, 7651)
vector c shape -- 48001
Update Vector C shape -- 48002
Traceback (most recent call last): File
"/Users/removed/PycharmProjects/hw2/main.py", line 139, in main() File "/Users/removed/PycharmProjects/hw2/main.py", line 65, in main b1 = st.fit_parameters(A1, c) File "/Users/removed/PycharmProjects/hw2/hw3_part1.py", line 191, in fit_parameters x = np.linalg.lstsq(new_matrix_T,vec_c) File "/Users/removed/.conda/envs/hw2/lib/python3.6/site-packages/numpy/linalg/linalg.py", line 1984, in lstsq raise LinAlgError('Incompatible dimensions') numpy.linalg.linalg.LinAlgError: Incompatible dimensions
Upvotes: 1
Views: 3615
Reputation: 12147
You're transposing your matrix matrix_a
which is shape M, N = 48002, 7651
to shape N, M = 7651, 48002
. But the problem is that your vector is shape M = 48002,
and np.linalg.lstsq
takes dimensions (a.shape=(M, N), b.shape=(M,)
. Because of your transpose, you are passing dimensions (a.shape=(N, M), b.shape=(M,))
.
Solution? Don't transpose matrix_a
.
Upvotes: 2