Reputation: 35
Suppose I have a dataframe that has multiple components and their properties listed out in multiple columns and I want to run multiple functions against the columns. My approach was to try and base it off the substring in each column header, but I haven't been able to figure out how to do that. Below is an example of the data frame.
Basket F_Type_1 F_Qty_1 F_P_1 F_Type_2 F_Qty_2 F_P_2
AAA Apple 10 2.5 Banana 9 2
BBB Peach 5 6 Melon 20 5
I essentially want to cbind two new columns to the end of this dataframe that multiplies Qty and P so you get two new columns at the end like below.
F_Total_1 F_Total_2
25 18
30 100
The input is dynamic so on occasion it could be 2 fruits or 10 fruits in certain baskets. But I can figure that portion out, it's moreso trying to figure out how to multiply columns based on the Substrings '1' or '2'.
I appreciate all your help and any other approaches you may have!
Upvotes: 2
Views: 444
Reputation: 10761
We create a function that finds the specific names, and then calculates the rowwise products. The heavy lifter of this function is the mapply
function. We add a final step to rename the resultant data.frame
.
fun1 <- function(data){
qty_names <- names(data)[grepl(pattern = "Qty", x = names(data))]
p_names <- names(data)[grepl(pattern = "P", x = names(data))]
setNames(
data.frame(
mapply(qty_names, p_names,
FUN = function(n1, n2) apply(data[c(n1,n2)], 1, prod))),
paste0('F_Total_', 1:length(p_names)))
}
cbind(dat, fun1(dat))
Basket F_Type_1 F_Qty_1 F_P_1 F_Type_2 F_Qty_2 F_P_2 F_Total_1 F_Total_2
1 AAA Apple 10 2.5 Banana 9 2 25 18
2 BBB Peach 5 6.0 Melon 20 5 30 100
Upvotes: 2
Reputation: 444
Suggestion: If you could store your data in the long format, it will make future maintenance much cleaner.
Basket Item Type Qty Price Total
AAA 1 Apple 10 2.5 25
AAA 2 Banana 9 2 18
BBB 1 Peach 5 6.0 30
BBB 2 Melon 20 5 100
BBB 3 Orange 11 2.7 29.7
Then, when you really need the data in the above format, use the data.table
package to transpose the data.
library(data.table)
fruits <- data.frame("Basket" = c("AAA", "AAA", "BBB", "BBB", "BBB"),
"Item" = c(1,2,1,2,3),
"Type" = c("Apple", "Banana", "Peach", "Melon", "Orange"),
"Qty" = c(10, 9, 5, 20, 11),
"Price" = c(2.5, 2, 6.0, 5, 2.7)
)
fruits$Total <- fruits$Qty * fruits$Price
fruits.New <- data.table::dcast(setDT(fruits),
formula = Basket ~ Item,
value.var = c("Type", "Price", "Qty", "Total"))
This way, you only have to maintain one formula and not to worry about apply
, while giving you the flexibility to have variable column numbers too.
The column name should be relatively easy to fix if it's important.
Upvotes: 0
Reputation: 79188
setNames(df[grepl("F_Qty",names(df))]*df[grepl("F_P",names(df))],paste0("F_Total_",1:2))
F_Total_1 F_Total_2
1 25 18
2 30 100
Upvotes: 1
Reputation: 28675
Create data
library(data.table)
df <- fread("
Basket F_Type_1 F_Qty_1 F_P_1 F_Type_2 F_Qty_2 F_P_2
AAA Apple 10 2.5 Banana 9 2
BBB Peach 5 6 Melon 20 5
")
df
# Basket F_Type_1 F_Qty_1 F_P_1 F_Type_2 F_Qty_2 F_P_2
# 1: AAA Apple 10 2.5 Banana 9 2
# 2: BBB Peach 5 6.0 Melon 20 5
For numbers from 1 to sum(grepl('F_P_', names(df)))
, set F_Total_{number}
as F_Qty_{number}*F_P_{number}
for(i in seq(sum(grepl('F_P_', names(df)))))
df[, paste0('F_Total_', i) := Reduce(`*`, .SD)
, .SDcols = paste0(c('F_Qty_', 'F_P_'), i)]
df
# Basket F_Type_1 F_Qty_1 F_P_1 F_Type_2 F_Qty_2 F_P_2 F_Total_1 F_Total_2
# 1: AAA Apple 10 2.5 Banana 9 2 25 18
# 2: BBB Peach 5 6.0 Melon 20 5 30 100
Or in base R with df
as a data.frame
for(i in seq(sum(grepl('F_P_', names(df)))))
df[paste0('F_Total_', i)] <- Reduce(`*`, df[paste0(c('F_Qty_', 'F_P_'), i)])
Upvotes: 1
Reputation: 206167
Here's a method using tidyverse
functions for reshaping your data. Basically using tidyr
verbs, we reshape your data into a more "tidy" format.
# library(dplyr); library(tidyr)
dd %>% select(Basket, contains("_Qty_"), contains("_P_")) %>%
gather("key", "value", -Basket) %>%
separate(key, c("F", "Val", "Grp")) %>%
group_by(Basket, Grp) %>%
spread(Val, value) %>%
mutate(Total=P*Qty, GrpN=paste0("Total_", Grp)) %>%
ungroup() %>%
select(Basket, GrpN, Total) %>%
spread(GrpN ,Total)
# Basket Total_1 Total_2
# <fct> <dbl> <dbl>
# 1 AAA 25 18
# 2 BBB 30 100
Upvotes: 1
Reputation: 5673
In base R, you can use the [[]]
form to access column with a string, so you can loop easily
df <- read.table(text = "Basket F_Type_1 F_Qty_1 F_P_1 F_Type_2 F_Qty_2 F_P_2
AAA Apple 10 2.5 Banana 9 2
BBB Peach 5 6 Melon 20 5",header = T)
for(i in 1:2)
{
df[[paste0("F_Total_",i)]] <- as.numeric(df[[paste0("F_P_",i)]])*as.numeric(df[[paste0("F_Qty_",i)]])
}
Basket F_Type_1 F_Qty_1 F_P_1 F_Type_2 F_Qty_2 F_P_2 F_Total_1 F_Total_2
1 AAA Apple 10 2.5 Banana 9 2 25 18
2 BBB Peach 5 6.0 Melon 20 5 30 100
Upvotes: 1