Reputation: 442
I have a data.frame with 3 cols: date, rate, price. I want to add columns that come from a matrix, after rate and before price.
df = tibble('date' = c('01/01/2000', '02/01/2000', '03/01/2000'),
'rate' = c(7.50, 6.50, 5.54),
'price' = c(92, 94, 96))
I computed the lags of rate using a function that outputs a matrix:
rate_Lags = matrix(data = c(NA, 7.50, 5.54, NA, NA, 7.50), ncol=2, dimnames=list(c(), c('rate_tMinus1', 'rate_tMinus2'))
I want to insert those lags after rate (and before price) using names indexing rather than column order.
The add_column
function from tibble package (Adding a column between two columns in a data.frame) does not work because it only accepts an atomic vector (hence if I have 10 lags I will have to call add_column 10 times). I could use apply
in my rate_Lags
matrix. Then, however, I lose the dimnames from my rate_Lags
matrix.
Using number indexing (subsetting) (https://stat.ethz.ch/pipermail/r-help/2011-August/285534.html) could work if I knew the position of a specific column name (any function that retrieves the position of a column name?).
Is there any simple way of inserting a bunch of columns in a specific position in a data frame/tibble object?
Upvotes: 8
Views: 5448
Reputation: 887891
We could unclass
the dataset to a list
and then use append
to insert 'rate_Lags' at specific locations, reconvert the list
to data.frame
i1 <- match('rate', names(df))
data.frame(append(unclass(df), as.data.frame(rate_Lags), after = i1))
# date rate rate_tMinus1 rate_tMinus2 price
#1 01/01/2000 7.50 NA NA 92
#2 02/01/2000 6.50 7.50 NA 94
#3 03/01/2000 5.54 5.54 7.5 96
Or with tidyverse
library(tidyverse)
rate_Lags %>%
as_tibble %>%
append(unclass(df), ., after = i1) %>%
bind_cols
# A tibble: 3 x 5
# date rate rate_tMinus1 rate_tMinus2 price
# <chr> <dbl> <dbl> <dbl> <dbl>
#1 01/01/2000 7.5 NA NA 92
#2 02/01/2000 6.5 7.5 NA 94
#3 03/01/2000 5.54 5.54 7.5 96
Upvotes: 1
Reputation: 76653
Maybe this is not very elegant, but you only call the function once and I believe it's more or less general purpose.
fun <- function(DF, M){
nms_DF <- colnames(DF)
nms_M <- colnames(M)
inx <- which(sapply(nms_DF, function(x) length(grep(x, nms_M)) > 0))
cbind(DF[seq_len(inx)], M, DF[ seq_along(nms_DF)[-seq_len(inx)] ])
}
fun(df, rate_Lags)
# date rate rate_tMinus1 rate_tMinus2 price
#1 01/01/2000 7.50 NA NA 92
#2 02/01/2000 6.50 7.50 NA 94
#3 03/01/2000 5.54 5.54 7.5 96
Upvotes: 1
Reputation: 13591
You may be overlooking the following
library(dplyr)
I <- which(names(df) == "rate")
if (I == ncol(df)) {
cbind(df, rate_Lags)
} else {
cbind(select(df, 1:I), rate_Lags, select(df, (I+1):ncol(df)))
}
# date rate rate_tMinus1 rate_tMinus2 price
# 1 0.0005 7.50 NA NA 92
# 2 0.0010 6.50 7.50 NA 94
# 3 0.0015 5.54 5.54 7.5 96
Upvotes: 4