Reputation: 1591
I have a bit of a perplexing operation to try to accomplish efficiently on a dataset with the following general formal:
id,date,ind_1,ind_2,ind_3,ind_4
1,2014-01-01,ind_1,NaN,NaN,NaN
2,2014-01-02,ind_1,NaN,ind_3,NaN
3,2014-01-03,ind_1,ind_2,ind_3,NaN
I am trying to figure out how I can create a new column "ind_all" that is filled with any non-null "ind" column. That is simple enough. I can use .idxmax(). However, the tricky part is that I can have multiple "ind" per row. This means I need to create a new record when there are duplicates. The above example should end up looking like this in the end:
id,date,ind_1,ind_2,ind_3,ind_4,ind_all
1,2014-01-01,ind_1,NaN,NaN,NaN,ind_1
2,2014-01-02,ind_1,NaN,ind_3,NaN,ind_1
2,2014-01-02,ind_1,NaN,ind_3,NaN,ind_3
3,2014-01-03,ind_1,ind_2,ind_3,NaN,ind_1
3,2014-01-03,ind_1,ind_2,ind_3,NaN,ind_2
3,2014-01-03,ind_1,ind_2,ind_3,NaN,ind_3
Any tips or tricks are most appreciated as always!
Upvotes: 2
Views: 68
Reputation: 402323
There's a merge
based solution using melt
/stack
to build the RHS.
v = (df.drop('date', 1)
.melt('id')
.drop('variable', 1)
.dropna()
.rename({'value' : 'ind_all'}, axis=1)
)
df.merge(v)
id date ind_1 ind_2 ind_3 ind_4 ind_all
0 1 2014-01-01 ind_1 NaN NaN NaN ind_1
1 2 2014-01-02 ind_1 NaN ind_3 NaN ind_1
2 2 2014-01-02 ind_1 NaN ind_3 NaN ind_3
3 3 2014-01-03 ind_1 ind_2 ind_3 NaN ind_1
4 3 2014-01-03 ind_1 ind_2 ind_3 NaN ind_2
5 3 2014-01-03 ind_1 ind_2 ind_3 NaN ind_3
Or,
df.merge(df.drop('date', 1)
.set_index('id')
.stack()
.reset_index(1, drop=True)
.to_frame('ind_all'),
left_on='id',
right_index=True
)
id date ind_1 ind_2 ind_3 ind_4 ind_all
0 1 2014-01-01 ind_1 NaN NaN NaN ind_1
1 2 2014-01-02 ind_1 NaN ind_3 NaN ind_1
1 2 2014-01-02 ind_1 NaN ind_3 NaN ind_3
2 3 2014-01-03 ind_1 ind_2 ind_3 NaN ind_1
2 3 2014-01-03 ind_1 ind_2 ind_3 NaN ind_2
2 3 2014-01-03 ind_1 ind_2 ind_3 NaN ind_3
Upvotes: 4