Reputation: 19
When I try to enter a text in order to make predictions the execute gives me "NameError: name ‘model’ is not defined"
def evaluate_mode(Xtrain, ytrain, Xtest, ytest):
scores = list()
n_repeats = 2
n_words = Xtest.shape[1]
for i in range(n_repeats):
# define network
model = Sequential()
model.add(Dense(50, input_shape=(n_words,), activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)
# evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
scores.append(acc)
print('%d accuracy: %s' % ((i+1), acc))
return scores
def prepare_data(train_docs, test_docs, mode):
# create the tokenizer
tokenizer = Tokenizer()
# fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)
# encode training data set
Xtrain = tokenizer.texts_to_matrix(train_docs, mode=mode)
# encode testing data set
Xtest = tokenizer.texts_to_matrix(test_docs, mode=mode)
return Xtrain, Xtest
def predict_sentiment(review, vocab, tokenizer, model):
# clean
tokens = clean_doc(review)
# filter by vocab
tokens = [w for w in tokens if w in vocab]
# convert to line
line = ' '.join(tokens)
# encode
encoded = tokenizer.texts_to_matrix([line], mode='freq')
# prediction
yhat = model.predict(encoded, verbose=0)
return round(yhat[0,0])
Upvotes: 1
Views: 9949
Reputation: 510
In evaluate_mode
function your are not returning the model with out returning the model it will so such a kind of error.return the model for the next prediction in predict_statement.
Upvotes: 0
Reputation: 46
If you do the training process in evaluate_mode()
, the model is a local variable and cannot be shared with predict_sentiment()
. You should make evaluate_mode()
return model
and let predict_sentiment()
take it as fourth argument.
Upvotes: 2