Reputation: 45
I have this:
import numpy as np
mol= np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20], [21], [22], [23], [24], [25], [26], [27]])
i = np.where(mol == 7)
print(i)
But it's return
(array([], dtype=int64),)
Also, if i do
i = np.where(mol == 7)
It's return the same
What's the problem? Thank you!
Upvotes: 2
Views: 2479
Reputation: 51155
When you create a numpy array with jagged lists, the resulting numpy array will be of dtype object
and contain lists.
>>> x = np.array([[1], [1,2]])
>>> x
array([list([1]), list([1, 2])], dtype=object)
You can clearly see the same results with your input list:
array([list([0, 1, 2, 3, 4]), list([5, 6, 7, 8, 9]),
list([10, 11, 12, 13, 14]), list([15, 16, 17, 18, 19]), list([20]),
list([21]), list([22]), list([23]), list([24]), list([25]),
list([26]), list([27])], dtype=object)
This is why np.where
doesn't find your values, you can't search lists using np.where
. Compare this to a non-jagged array that doesn't contain lists
:
x = np.arange(28).reshape(7, -1)
In [21]: np.where(x==7)
Out[21]: (array([1]), array([3]))
If you want to get around this, you can either not use jagged arrays, which are usually a hassle anyways, or you can pad your array with something like -1
:
top = max([len(i) for i in mol])
mol = np.asarray([np.pad(i, (0, top-len(i)), 'constant', constant_values=-1) for i in mol])
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, -1, -1, -1, -1],
[21, -1, -1, -1, -1],
[22, -1, -1, -1, -1],
[23, -1, -1, -1, -1],
[24, -1, -1, -1, -1],
[25, -1, -1, -1, -1],
[26, -1, -1, -1, -1],
[27, -1, -1, -1, -1]])
Which will enable you to again use np.where
In [40]: np.where(mol==7)
Out[40]: (array([1]), array([2]))
Upvotes: 2