Reputation: 368
I'm having some issues calculating the corners of a rotated rectangle within a rotated container with both having offset x/y co-ords.
The pivot is off but I'm not sure of the solution. The following scenarios work:
(x, y, rotation)
image = 0, 0, 45
container = 100, 100, 45
image = 200, 0, 45
container = 100, 100, 0
however setting the rotation of the container, and the image co-ords messes up the pivot e.g.
image = 200, 0, 45
container = 100, 100, 45
Below is the code for calculating the corners of the image in global co-ordinate space:
public get corners() {
const worldData = this.worldData;
//Get angle of object in radians;
const radAngle = worldData.rotation * Math.PI / 180;
const pivotX = worldData.pivotX;
const pivotY = worldData.pivotY;
const width = this.sourceWidth * worldData.scaleX;
const height = this.sourceHeight * worldData.scaleY;
const x = worldData.x;//this.x;
const y = worldData.y;//this.y;
//Get the corners
const c1 = this.getCorner(pivotX, pivotY, x, y, radAngle);
const c2 = this.getCorner(pivotX, pivotY, x + width, y, radAngle);
const c3 = this.getCorner(pivotX, pivotY, x + width, y + height, radAngle);
const c4 = this.getCorner(pivotX, pivotY, x, y + height, radAngle);
return {c1, c2, c3, c4};
}
public get worldData() {
let x = this.x;
let y = this.y;
let pivotX = this.x;
let pivotY = this.y;
let rotation = this.rotation;
let scaleX = this.scaleX;
let scaleY = this.scaleY;
let parent = this.parent;
while(parent) {
x += parent.x;
y += parent.y;
pivotX += parent.x;
pivotY += parent.y;
rotation += parent.rotation;
scaleX *= parent.scaleX;
scaleY *= parent.scaleY;
parent = parent.parent;
}
return {x, y, scaleX, scaleY, rotation, pivotX, pivotY}
}
protected getCorner(pivotX:number, pivotY:number, cornerX:number, cornerY:number, angle:number) {
let x, y, distance, diffX, diffY;
/// get distance from center to point
diffX = cornerX - pivotX;
diffY = cornerY - pivotY;
distance = Math.sqrt(diffX * diffX + diffY * diffY);
/// find angle from pivot to corner
angle += Math.atan2(diffY, diffX);
/// get new x and y and round it off to integer
x = pivotX + distance * Math.cos(angle);
y = pivotY + distance * Math.sin(angle);
return {x, y};
}
Upvotes: 4
Views: 1908
Reputation: 13087
Let's suppose that the scenario is as follows:
where the lower left corner of the image (solid line) has coordinates (x_i, y_i)
and the lower left corner of the container (dashed line) has coordinates (X_c, Y_c)
. Moreover, the image (of width w
and height h
) is rotated counter-clockwise by angle beta
with respect to the laboratory frame, while the container itself is rotated (also counter-clockwise) by angle alpha
.
Now, let's focus for example on the upper-right corner P
. With respect to the laboratory frame (global canvas), its coordinates can be expressed as:
R(beta) . ( w, h ) + ( x_i, y_i )
where .
denotes matrix multiplication, and R
is a counter-clockwise rotation matrix
R(beta) = [ cos(beta) -sin(beta) ]
[ sin(beta) cos(beta) ]
Now, we need to transform this into a coordinate frame with respect to the container. Formally, this means that we need first to subtract the offset and then to rotate by -alpha
(or alpha
clock-wise). Thus with everything together:
R(-alpha).( R(beta) . (w, h) + (x_i, y_i) - (X_c, Y_c) )
The other corners can be handled similarly, just by replacing (w, h)
with the proper coordinates...
In terms of code, one might implement these formulae as:
//counter-clock-wise rotation by given angle in degrees
function rotateCCWBy(angle, {x, y}) {
const angle_rad = angle * Math.PI / 180;
const cos_a = Math.cos(angle_rad),
sin_a = Math.sin(angle_rad);
return {
x: cos_a * x - sin_a * y,
y: sin_a * x + cos_a * y
};
}
//shift by a multiple fac of an offset {xref, yref}
function offsetBy(fac, {x:xref, y:yref}, {x, y}) {
return {
x: fac*xref + x,
y: fac*yref + y
};
}
const image = {
coords: {x: 200, y: 0}, //lab-frame coordinates
angle: 45, //lab-frame rotation angle
width: 50,
height: 10
};
const container = {
coords: {x: 100, y: 100}, //lab-frame coordinates
angle: 45 //lab-frame rotation angle
};
//calculate the coordinates of the image's top-right corner
//with respect to the container
const corner = rotateCCWBy(-container.angle,
offsetBy(
-1, container.coords,
offsetBy(
+1, image.coords,
rotateCCWBy(image.angle,
{x: image.width, y: image.height}
)
)
)
);
console.log(corner);
EDIT:
In case the y-axis is supposed to point "downwards", the formulas above work as well, one just needs to interpret the angles as clock-wise instead of counter-clockwise (so in principle the function rotateCCWBy
should be renamed to rotateCWBy
). As an example, let's consider this scenario:
Here, the top-left corner of the container is located at position (2,1) and the container itself is rotated by 15 degrees. The image (black rectangle) of width 4 and height 2 is rotated by 30 degrees and its top-left corner is located at position (3, 3). Now, we want to calculate the coordinates (x, y)
of point P with respect to the container.
Using:
const image = {
coords: {x: 3, y: 3}, //lab-frame coordinates
angle: 30, //lab-frame rotation angle
width: 4,
height: 2
};
const container = {
coords: {x: 2, y: 1}, //lab-frame coordinates
angle: 15 //lab-frame rotation angle
};
//calculate the coordinates of the image's top-left corner
//with respect to the container
const corner = rotateCCWBy(-container.angle,
offsetBy(
-1, container.coords,
offsetBy(
+1, image.coords,
rotateCCWBy(image.angle,
{x: image.width, y: image.height}
)
)
)
);
console.log(corner);
yields
{ x: 4.8296291314453415, y: 4.640160440463835 }
which can be (approximately) visually verified from the attached figure.
EDIT2:
After additional clarification, the coordinates of the image are not supposed to be "lab-frame" (i.e., with respect to the canvas), but with respect to the already rotated container. Thus the transformation needs to be adapted as:
const corner =
offsetBy(
+1, container.coords,
rotateCCWBy(container.angle,
offsetBy(
+1, image.coords,
rotateCCWBy(image.angle,
{x: image.width, y: image.height}
)
)
)
);
function rotateCCWBy(angle, {x, y}) {
const angle_rad = angle * Math.PI / 180;
const cos_a = Math.cos(angle_rad),
sin_a = Math.sin(angle_rad);
return {
x: cos_a * x - sin_a * y,
y: sin_a * x + cos_a * y
};
}
Upvotes: 2