Reputation: 954
I want to sum columns of a 2d array dat
by row index idx
. The following example works but is slow for large arrays. Any idea to speed it up?
import numpy as np
dat = np.arange(18).reshape(6, 3, order = 'F')
idx = np.array([0, 1, 1, 1, 2, 2])
for i in np.unique(idx):
print(np.sum(dat[idx==i], axis = 0))
Output
[ 0 6 12]
[ 6 24 42]
[ 9 21 33]
Upvotes: 1
Views: 55
Reputation: 221584
Approach #1
We can leverage matrix-multiplication
with np.dot
-
In [56]: mask = idx[:,None] == np.unique(idx)
In [57]: mask.T.dot(dat)
Out[57]:
array([[ 0, 6, 12],
[ 6, 24, 42],
[ 9, 21, 33]])
Approach #2
For the case with idx
already sorted, we can use np.add.reduceat
-
In [52]: p = np.flatnonzero(np.r_[True,idx[:-1] != idx[1:]])
In [53]: np.add.reduceat(dat, p, axis=0)
Out[53]:
array([[ 0, 6, 12],
[ 6, 24, 42],
[ 9, 21, 33]])
Upvotes: 2
Reputation: 92854
A bit faster approach with set
object and ndarray.sum()
method:
In [216]: for i in set(idx):
...: print(dat[idx == i].sum(axis=0))
...:
[ 0 6 12]
[ 6 24 42]
[ 9 21 33]
Time execution comparison:
In [217]: %timeit for i in np.unique(idx): r = np.sum(dat[idx==i], axis = 0)
109 µs ± 1.1 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [218]: %timeit for i in set(idx): r = dat[idx == i].sum(axis=0)
71.1 µs ± 1.98 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Upvotes: 0