Reputation: 2232
Following code can be used to transform strings into categorical labels:
import pandas as pd
from sklearn.preprocessing import LabelEncoder
df = pd.DataFrame([['A','B','C','D','E','F','G','I','K','H'],
['A','E','H','F','G','I','K','','',''],
['A','C','I','F','H','G','','','','']],
columns=['A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])
pd.DataFrame(columns=df.columns, data=LabelEncoder().fit_transform(df.values.flatten()).reshape(df.shape))
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0 1 2 3 4 5 6 7 9 10 8
1 1 5 8 6 7 9 10 0 0 0
2 1 3 9 6 8 7 0 0 0 0
Question:
How can I query the mappings (it appears they are sorted alphabetically)?
I.e. a list like:
A: 1
B: 2
C: 3
...
I: 9
K: 10
Thank you!
Upvotes: 1
Views: 279
Reputation: 323226
I think there is transform
in LabelEncoder
le=LabelEncoder()
le.fit(df.values.flatten())
dict(zip(df.values.flatten(),le.transform(df.values.flatten()) ))
Out[137]:
{'': 0,
'A': 1,
'B': 2,
'C': 3,
'D': 4,
'E': 5,
'F': 6,
'G': 7,
'H': 8,
'I': 9,
'K': 10}
Upvotes: 1
Reputation: 402263
yes, it's possible if you define the LabelEncoder
separately and query its classes_
attribute later.
le = LabelEncoder()
data = le.fit_transform(df.values.flatten())
dict(zip(le.classes_[1:], np.arange(1, len(le.classes_))))
{'A': 1,
'B': 2,
'C': 3,
'D': 4,
'E': 5,
'F': 6,
'G': 7,
'H': 8,
'I': 9,
'K': 10}
The classes_
stores a list of classes, in the order that they were encoded.
le.classes_
array(['', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K'], dtype=object)
So you may safely assume the first element is encoded as 1, and so on.
To reverse encodings, use le.inverse_transform
.
Upvotes: 2