Reputation: 477
In Python's statsmodels.formula.api
, the ols functionality automatically includes and estimates an intercept:
results = sm.ols(formula="s ~ x + y + z", data=somedata).fit()
results.params
(* Intercept 0.632646, x -1.258761, y 0.465076, z 0.497991 *)
Because I'm using it in a linear probability model, is there any way to fix the intercept to 0.5?
Upvotes: 4
Views: 4549
Reputation: 4150
You can reproduce this behavior in 2 steps:
predefined_intercept
from your targetsMinimal example:
from statsmodels.formula.api import ols
import pandas as pd
import numpy as np
n_samples = 100
predefined_intercept = 0.5
somedata = pd.DataFrame(np.random.random((n_samples, 3)), columns = ['x', 'y', 'z'])
somedata['s'] = somedata['x'] - 2 * somedata['y'] + 5 * somedata['z'] - predefined_intercept
results = ols(formula="s ~ x + y + z - 1", data=somedata).fit()
print(results.params)
Output:
x 0.671561
y -2.315076
z 4.759542
See an official example notebook on formulas for detailed explanations and more.
Upvotes: 5