Reputation: 4291
I have a dataframe:
swimming(4) 1 4 hiking (1 ) 2 2 running ( 12 ) 3 5 fishing( 2 )
| | sid | Hobby (times per month) |
|-----+-------+-------------------------|
| 0 | 3 | swimming(4) |
|-----+-------+-------------------------|
| 1 | 4 | hiking (1 ) |
|-----+-------+-------------------------|
| 2 | 2 | running ( 12 ) |
|-----+-------+-------------------------|
| 3 | 5 | fishing ( 2 ) |
How to extract strings by removing the brackets in the second column as:
| | sid | Hobby (times per month) |
|-----+-------+-------------------------|
| 0 | 3 | swimming |
|-----+-------+-------------------------|
| 1 | 4 | hiking |
|-----+-------+-------------------------|
| 2 | 2 | running |
|-----+-------+-------------------------|
| 3 | 5 | fishing |
Upvotes: 1
Views: 123
Reputation: 3118
to implement the regex in pandas you can use pandas.apply():
import re
def remove_brackets(string):
part = regexp_matcher.findall(string)
if not part:
return string
return part[0]
regexp_matcher = re.compile(r'^([\w]+)[\s]*\([\s]*[\d]*[\s]*\)[\s]*$')
df = pd.DataFrame()
df['string'] = ['swimming(4)', 'swimming(4)', 'swimming(4)']
df['new_string'] = df['string'].apply(remove_brackets)
Upvotes: 0
Reputation: 939
You can use 'str' method to match the string in pandas
df.columns = ['sid','Hobby']
df.Hobby = df.Hobby.str.extract(r'(\w*)')
Upvotes: 1
Reputation: 3894
If you want for example, swimming(4)
to be changed to swimming
, you can use below regex:
^([\w]+)[\s]*\([\s]*[\d]*[\s]*\)[\s]*$
Demo: https://regex101.com/r/sTO1Q9/1
Test Cases:
swimming(4)
hiking (1 )
running ( 12 )
fishing( 2 )
hiking(1)
Match:
Match 1
Full match 0-11 `swimming(4)`
Group 1. 0-8 `swimming`
Match 2
Full match 12-25 `hiking (1 )`
Group 1. 12-18 `hiking`
Match 3
Full match 26-40 `running ( 12 )`
Group 1. 26-33 `running`
Match 4
Full match 41-53 `fishing( 2 )`
Group 1. 41-48 `fishing`
Match 5
Full match 54-64 `hiking(1) `
Group 1. 54-60 `hiking`
Upvotes: 1