Reputation: 4730
I have a dataframe like so:
[5232 rows x 2 columns]
0 2
0
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 NaN
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
And I'm trying to interpolate it. I've found that the basic panda's methods work fine (e.g. time
or linear
), but if I try and use a scipy
method like krogh
or barycentric
I find that the interpolation doesn't appear to interpolate the points:
0 2
0
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 NaN
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
My interpolation method is as follows:
def interpolate(df : DataFrame, interpolate_type : str = 'pandas'):
""" Helper method for inserting different interpolation methods into the main function. """
if interpolate_type == 'pandas':
return df.interpolate(limit_direction='both', method='time')
if interpolate_type == 'krogh':
return df.interpolate(limit_direction='both', method='krogh')
Is there something else you need to do to get scipy interpolation methods to work?
Edit: Here is the file I'm working on: link
Also, here is my toy script that fails with the above CSV:
df_2[2] = pd.to_numeric(df_2[2],errors='force')
df_2 = df_2.set_index(pd.DatetimeIndex(df_2[0])) # Increases interpolation accuracy.
df_2.index = pd.to_datetime(df_2.index)
df_2.iloc[1, 2] = np.NaN
df_2.sort_index(inplace=True)
print(df_2.interpolate(limit_direction='both', method='krogh'))
If I change the interpolate function to any
scipy` version it fails.
Also here is my toy case that's failing on real data:
Upvotes: 3
Views: 1758
Reputation: 16079
Given your sample data (formatted with DatetimeIndex) all available methods appear to work with pandas 0.22.0:
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 NaN
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 5 entries, 2018-02-01 00:00:00 to 2018-02-01 02:00:00
Data columns (total 2 columns):
0 5 non-null datetime64[ns]
1 4 non-null float64
dtypes: datetime64[ns](1), float64(1)
memory usage: 120.0 bytes
methods = ['linear', 'time', 'index', 'values', 'nearest', 'zero',
'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh',
'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima']
for method in methods:
print(method)
print(df.interpolate(limit_direction='both', method=method))
linear
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 368.28
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
time
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 368.28
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
index
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 368.28
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
values
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 368.28
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
nearest
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 435.24
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
zero
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 435.24
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
slinear
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 368.28
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
quadratic
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.240000
2018-02-01 00:30:00 2018-02-01 00:30:00 361.818947
2018-02-01 01:00:00 2018-02-01 01:00:00 301.320000
2018-02-01 01:30:00 2018-02-01 01:30:00 256.680000
2018-02-01 02:00:00 2018-02-01 02:00:00 245.520000
cubic
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 365.49
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
barycentric
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 245.52
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
krogh
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 365.49
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
piecewise_polynomial
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 368.28
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
from_derivatives
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24
2018-02-01 00:30:00 2018-02-01 00:30:00 368.28
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52
pchip
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 435.24000
2018-02-01 00:30:00 2018-02-01 00:30:00 360.92087
2018-02-01 01:00:00 2018-02-01 01:00:00 301.32000
2018-02-01 01:30:00 2018-02-01 01:30:00 256.68000
2018-02-01 02:00:00 2018-02-01 02:00:00 245.52000
akima
0 1
2018-02-01 00:00:00 2018-02-01 00:00:00 4.352400e+02
2018-02-01 00:30:00 2018-02-01 00:30:00 -5.045003e+07
2018-02-01 01:00:00 2018-02-01 01:00:00 3.013200e+02
2018-02-01 01:30:00 2018-02-01 01:30:00 2.566800e+02
2018-02-01 02:00:00 2018-02-01 02:00:00 2.455200e+02
Upvotes: 3